Five wells of L oilfield in Bohai bay basin have drilled 10 - 15 meters thick oil layer in the Paleogene delta. Due to the deep-buried reservoir and the poor seismic performance, it is difficult to identify the reserv...Five wells of L oilfield in Bohai bay basin have drilled 10 - 15 meters thick oil layer in the Paleogene delta. Due to the deep-buried reservoir and the poor seismic performance, it is difficult to identify the reservoir genesis, and predict reservoir distribution. By analyzing core, well logging and seismic data, a stable mudstone section is selected as the correlation marker to establish a stratigraphic framework. The paleogeomorphology is reconstructed after decompaction correction and paleobathymetric analysis. Based on the differences of paleotopography and sedimentary facies, the study area mainly develops two delta systems: low gradient coarse-grain delta system and steep gradient delta-turbidite system. The favorable reservoir of low gradient coarse-grain delta, which is thick and has good lateral connectivity, mainly locates in the delta front. The favorable reservoir of steep gradient delta-turbidite system locates in the delta front and turbidite facies, and the delta front deposits are thin and have poor lateral connectivity. The boundary of delta front is first depicted on the basis of paleotopography. In combination with reservoir architecture and forward modeling analysis, the seismic attribute is then optimized to predict the distribution of favorable reservoir. Using this method, several sets of oil-bearing sandbodies have been drilled in L oilfield, and the prediction accuracy of reservoir distribution is proved to be high. This study demonstrates that the paleogeomorphology plays an important role in controlling the genesis and distribution of the delta reservoir and provides reference for the reservoir prediction in similar oilfields.展开更多
Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the pr...Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the prediction of the distribution of reservoirs, differ greatly. This study illustrates the differences in braid-delta depositional systems in terms of sedimentary characteristics, associated systems and reser- voir distributions using three typical paleodeltas in western China: the Zhenbei delta of the upper Triassic Yanchang Formation in the Ordos Basin, the Yuanba delta of the upper Triassic Xujiahe Formation in the Sichuan Basin and the Jimsar delta of the upper Permian Wutonggou Formation in the Junggar Basin. A stratigraphic framework was established using seismic data, logs and cores by choosing stable mud sections as regional correlation markers and, topographies of these deltas were reconstructed based on the decompaction and paleobathymetric corrections. Based on both the paleotopography of these deltas and the differences of their sedimentary facies, these braided deltas can be classified into two systems: steep-gradient braid-delta-turbidite system and low-gradient braid-delta-lacustrine system. Moreover, the low-gradient braid-delta-lacustrine system can be further divided into interfingered and sharp contact sub-types according to the contact relation between the delta sands and lacustrine muds. This study shows that the paleotopography of basin margins strongly controls the accommodation as braid deltas prograde into lacustrine basins and, influences the location of the shoreline in response to changes in the lake level. Furthermore, paleotopography plays a significant role in facies and reservoir distribution which is important for petroleum exploration and development.展开更多
This paper mainly discusses the origin and deposhional features of fan-deltas and braid deltas. Fan-del-tas are storm discharge-dominated, while braid deltas are usually flashy flood-dominated. The two types ofdelta, ...This paper mainly discusses the origin and deposhional features of fan-deltas and braid deltas. Fan-del-tas are storm discharge-dominated, while braid deltas are usually flashy flood-dominated. The two types ofdelta, like common deltas, were reworked by marine processes. Delta systems are classified into nine deltatypes on the basis of the subaerial depositional processes and the nature of marine reworking. Fan-deltas and braid deltas are of great significance for petroleum exploration. In divergent-marginforeland and intraplate rift-subsided basin settings fan-deltas often form combination traps for petroleum ac-cumulation.展开更多
During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is ...During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is controversial. In order to provide a basis for the prediction of reservoir sand, the sedimentary facies are recognized according to abundant core observations and de- scriptions combined with well-log analysis, isograms, seismic interpretations and regional sedimentary background. The middle member of the Kalpingtag Formation, which shows a retrograding sequence, is interpreted as braid-delta deposits influenced by mi- nor tidal reworking. The sources of clasts are from the southern uplift. The subaqueous braid-delta deposits in the study area have some characteristics quite different from the common deltas that generally deposit in marginal seas. Four facies grouped to a delta front association are recognized, ranging from distributary-channel (Facies A), front bar (Facies B), sand sheet (Facies C) and inter- distributary bay (Facies D). The distributary channels construct the sandbody framework of the delta front. Front bar deposits, which are fine-grained with low depositional dips, display a near-continuous sand strip around the entire periphery of the delta. Sand sheet deposits are mainly found in front of Facies B, gradationally contacting with the prodelta. The interdistributary bay is essentially the uppermost unit capping the channel sequence and generally made up of laminated and massive mudstones. The delta front deposits display extensive sheet-like bodies contrasting with the characteristic wedge shapes of common subaqueous delta bodies. The bi- modal cross-stratification and mud drapes in the fine- to medium-grained sandstone in the distal area are inferred to reflect high-energy tidal processes.展开更多
Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed ...Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed by seismic phase and well logging facies interpretation.The results show that due to the great sea level rise,the sedimentary system of the Miocene Oficina Formation in the MPE3 block shifted from the distal-source sandy braided river delta to tide-affected delta,and eventually to tide-dominated delta.Vertically,during the early stage of sedimentation of Oficina Formation,the distributary channels of the delta were dominated by braided river channels.While in the later stage,as the tidal effect was gradually intensified,the channel changed from braided channel to meandering channel.On plane,as a result of differential transgression,sedimentary framework and distribution of sand bodies vary across the study area.Compared with the eastern part,the western part has more braided channels,larger channel bars,less developments of distributary bay and higher ratio of sand to mud.Whereas the braided channels in the south are larger than those in the north.It is the first time we pointed out the impact of marine transgression differences on the sedimentary facies distribution and river type transition in the study area.Factors like the structural and paleogeomorphological change,sea level variation,supply of sediments have strong influence on the evolution of sedimentary system and distribution of sandbodies.It is predicted that the major sandbody is more developed in the central south,which can guide the subsequent horizontal well development.展开更多
Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeod...Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.展开更多
文摘Five wells of L oilfield in Bohai bay basin have drilled 10 - 15 meters thick oil layer in the Paleogene delta. Due to the deep-buried reservoir and the poor seismic performance, it is difficult to identify the reservoir genesis, and predict reservoir distribution. By analyzing core, well logging and seismic data, a stable mudstone section is selected as the correlation marker to establish a stratigraphic framework. The paleogeomorphology is reconstructed after decompaction correction and paleobathymetric analysis. Based on the differences of paleotopography and sedimentary facies, the study area mainly develops two delta systems: low gradient coarse-grain delta system and steep gradient delta-turbidite system. The favorable reservoir of low gradient coarse-grain delta, which is thick and has good lateral connectivity, mainly locates in the delta front. The favorable reservoir of steep gradient delta-turbidite system locates in the delta front and turbidite facies, and the delta front deposits are thin and have poor lateral connectivity. The boundary of delta front is first depicted on the basis of paleotopography. In combination with reservoir architecture and forward modeling analysis, the seismic attribute is then optimized to predict the distribution of favorable reservoir. Using this method, several sets of oil-bearing sandbodies have been drilled in L oilfield, and the prediction accuracy of reservoir distribution is proved to be high. This study demonstrates that the paleogeomorphology plays an important role in controlling the genesis and distribution of the delta reservoir and provides reference for the reservoir prediction in similar oilfields.
文摘Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the prediction of the distribution of reservoirs, differ greatly. This study illustrates the differences in braid-delta depositional systems in terms of sedimentary characteristics, associated systems and reser- voir distributions using three typical paleodeltas in western China: the Zhenbei delta of the upper Triassic Yanchang Formation in the Ordos Basin, the Yuanba delta of the upper Triassic Xujiahe Formation in the Sichuan Basin and the Jimsar delta of the upper Permian Wutonggou Formation in the Junggar Basin. A stratigraphic framework was established using seismic data, logs and cores by choosing stable mud sections as regional correlation markers and, topographies of these deltas were reconstructed based on the decompaction and paleobathymetric corrections. Based on both the paleotopography of these deltas and the differences of their sedimentary facies, these braided deltas can be classified into two systems: steep-gradient braid-delta-turbidite system and low-gradient braid-delta-lacustrine system. Moreover, the low-gradient braid-delta-lacustrine system can be further divided into interfingered and sharp contact sub-types according to the contact relation between the delta sands and lacustrine muds. This study shows that the paleotopography of basin margins strongly controls the accommodation as braid deltas prograde into lacustrine basins and, influences the location of the shoreline in response to changes in the lake level. Furthermore, paleotopography plays a significant role in facies and reservoir distribution which is important for petroleum exploration and development.
文摘This paper mainly discusses the origin and deposhional features of fan-deltas and braid deltas. Fan-del-tas are storm discharge-dominated, while braid deltas are usually flashy flood-dominated. The two types ofdelta, like common deltas, were reworked by marine processes. Delta systems are classified into nine deltatypes on the basis of the subaerial depositional processes and the nature of marine reworking. Fan-deltas and braid deltas are of great significance for petroleum exploration. In divergent-marginforeland and intraplate rift-subsided basin settings fan-deltas often form combination traps for petroleum ac-cumulation.
文摘During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is controversial. In order to provide a basis for the prediction of reservoir sand, the sedimentary facies are recognized according to abundant core observations and de- scriptions combined with well-log analysis, isograms, seismic interpretations and regional sedimentary background. The middle member of the Kalpingtag Formation, which shows a retrograding sequence, is interpreted as braid-delta deposits influenced by mi- nor tidal reworking. The sources of clasts are from the southern uplift. The subaqueous braid-delta deposits in the study area have some characteristics quite different from the common deltas that generally deposit in marginal seas. Four facies grouped to a delta front association are recognized, ranging from distributary-channel (Facies A), front bar (Facies B), sand sheet (Facies C) and inter- distributary bay (Facies D). The distributary channels construct the sandbody framework of the delta front. Front bar deposits, which are fine-grained with low depositional dips, display a near-continuous sand strip around the entire periphery of the delta. Sand sheet deposits are mainly found in front of Facies B, gradationally contacting with the prodelta. The interdistributary bay is essentially the uppermost unit capping the channel sequence and generally made up of laminated and massive mudstones. The delta front deposits display extensive sheet-like bodies contrasting with the characteristic wedge shapes of common subaqueous delta bodies. The bi- modal cross-stratification and mud drapes in the fine- to medium-grained sandstone in the distal area are inferred to reflect high-energy tidal processes.
基金supported by the Important National Science Technology Specific Projects (number 2016ZX05031-001)
文摘Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed by seismic phase and well logging facies interpretation.The results show that due to the great sea level rise,the sedimentary system of the Miocene Oficina Formation in the MPE3 block shifted from the distal-source sandy braided river delta to tide-affected delta,and eventually to tide-dominated delta.Vertically,during the early stage of sedimentation of Oficina Formation,the distributary channels of the delta were dominated by braided river channels.While in the later stage,as the tidal effect was gradually intensified,the channel changed from braided channel to meandering channel.On plane,as a result of differential transgression,sedimentary framework and distribution of sand bodies vary across the study area.Compared with the eastern part,the western part has more braided channels,larger channel bars,less developments of distributary bay and higher ratio of sand to mud.Whereas the braided channels in the south are larger than those in the north.It is the first time we pointed out the impact of marine transgression differences on the sedimentary facies distribution and river type transition in the study area.Factors like the structural and paleogeomorphological change,sea level variation,supply of sediments have strong influence on the evolution of sedimentary system and distribution of sandbodies.It is predicted that the major sandbody is more developed in the central south,which can guide the subsequent horizontal well development.
文摘Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.