In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Tight sand gas reservoirs are our country’s fairly rich unconventional natural gas resources, and their exploration and development is of prime importance. Sulige Gas Field which located in the northern Ordos Basin i...Tight sand gas reservoirs are our country’s fairly rich unconventional natural gas resources, and their exploration and development is of prime importance. Sulige Gas Field which located in the northern Ordos Basin is tight sand gas reservoirs. It is typically featured by low porosity and low permeability, and the error of porosity calculation by traditional methods is larger. Multicomponent explanation model is built by analyzing the thin slice data, and the objective function is got according to the concept of optimization log interpretation method. This paper puts the Genetic Algorithm and the Complex Algorithm together to form the GA-CM Hybrid Algorithm for searching the optimal solution of the objective function, getting the porosity of tight sandstone gas reservoirs. The deviation got by this method is lesser compared with the core porosity, with a high reliability.展开更多
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand...Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.展开更多
Low permeability tight sandstone reservoirs have a high filtrational resistance and a very low fluid flow rate.As a result,the propagation speed of the formation pressure is low and fluid flow behaves as a non-Darcy f...Low permeability tight sandstone reservoirs have a high filtrational resistance and a very low fluid flow rate.As a result,the propagation speed of the formation pressure is low and fluid flow behaves as a non-Darcy flow,which typically displays a highly non-linear behavior.In this paper,the characteristics and mechanism of pressure propagation in this kind of reservoir are revealed through a laboratory pressure propagation experiment and through data from an actual tight reservoir development.The main performance mechanism is as follows:A new pressure cage concept is proposed based on the pressure variation characteristics of the laboratory experiments.There are two methods of energy propagation in the actual water injection process:one is that energy is transmitted to the deep reservoir by the fluid flowing through the reservoir,and the other is that energy is transmitted by the elasticity of the reservoir.For one injection well model and one production well model,the pressure distribution curve between the injection and production wells,as calculated by the theoretical method,has three section types,and they show an oblique“S”shape with a straight middle section.However,the actual pressure distribution curve is nonlinear,with an obvious pressure advance at the front.After the injection pressure increases to a certain level,the curve shape is an oblique and reversed“S”shape.Based on the research,this paper explains the deep-seated reasons for the difference in pressure distribution and proposes that it is an effective way to develop low permeability tight reservoirs using the water injection supplement energy method.展开更多
The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir press...The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.展开更多
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘Tight sand gas reservoirs are our country’s fairly rich unconventional natural gas resources, and their exploration and development is of prime importance. Sulige Gas Field which located in the northern Ordos Basin is tight sand gas reservoirs. It is typically featured by low porosity and low permeability, and the error of porosity calculation by traditional methods is larger. Multicomponent explanation model is built by analyzing the thin slice data, and the objective function is got according to the concept of optimization log interpretation method. This paper puts the Genetic Algorithm and the Complex Algorithm together to form the GA-CM Hybrid Algorithm for searching the optimal solution of the objective function, getting the porosity of tight sandstone gas reservoirs. The deviation got by this method is lesser compared with the core porosity, with a high reliability.
基金supported by Major National Oil & Gas Specific Project(Grant No.2008ZX05020-001)
文摘Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.
基金supported by the National Science and Technology Major Project Fueling Shale Gas Development Demonstration Project[grant number 2016ZX05060]the Science and Technology Innovation Foundation of CNPC[grant number 2016D-5007-0208].
文摘Low permeability tight sandstone reservoirs have a high filtrational resistance and a very low fluid flow rate.As a result,the propagation speed of the formation pressure is low and fluid flow behaves as a non-Darcy flow,which typically displays a highly non-linear behavior.In this paper,the characteristics and mechanism of pressure propagation in this kind of reservoir are revealed through a laboratory pressure propagation experiment and through data from an actual tight reservoir development.The main performance mechanism is as follows:A new pressure cage concept is proposed based on the pressure variation characteristics of the laboratory experiments.There are two methods of energy propagation in the actual water injection process:one is that energy is transmitted to the deep reservoir by the fluid flowing through the reservoir,and the other is that energy is transmitted by the elasticity of the reservoir.For one injection well model and one production well model,the pressure distribution curve between the injection and production wells,as calculated by the theoretical method,has three section types,and they show an oblique“S”shape with a straight middle section.However,the actual pressure distribution curve is nonlinear,with an obvious pressure advance at the front.After the injection pressure increases to a certain level,the curve shape is an oblique and reversed“S”shape.Based on the research,this paper explains the deep-seated reasons for the difference in pressure distribution and proposes that it is an effective way to develop low permeability tight reservoirs using the water injection supplement energy method.
基金National Natural Science Foundation of China (NO. Z02047)CNPC Program (NO.Z03014).
文摘The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.