Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ...Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased.展开更多
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb...With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.展开更多
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo...Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs.展开更多
Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, he...Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and devel- opment modes of tight sandstone reservoirs are not deter- mined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distri- bution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mecha- nisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) "accumulation-densification" (AD), or the conventional tight type, (b) "densification-accumulation" (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reser- voir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depres- sions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is con- trolled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely dis- tributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and Turpan- Hami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions.展开更多
Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and...Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and trap-type coal-bearing gas reservoirs. Huge in resources, it is an important gas source in the natural gas industry. The formation and distribution characteristics of coal-measure gas in San Juan, Surat, West Siberia and Ordos basins are introduced in this paper. By reviewing the progress of exploration and development of coal-measure gas around the world, the coal-measure gas is confirmed as an important strategic option for gas supply. This understanding is mainly manifested in three aspects. First, globally, the Eurasian east-west coal-accumulation belt and North American north-south coal-accumulation belt are two major coal-accumulation areas in the world, and the Late Carboniferous–Permian, Jurassic and end of Late Cretaceous–Neogene are 3 main coal-accumulation periods. Second, continuous-type and trap-type are two main accumulation modes of coal-measure gas;it is proposed that the area with gas generation intensity of greater than 10×10^8 m^3/km^2 is essential for the formation of large coal-measure gas field, and the CBM generated by medium- to high-rank coal is usually enriched in syncline, while CBM generated by low-rank coal is likely to accumulate when the source rock and caprock are in good configuration. Third, it is predicted that coal-measure gas around the world has huge remaining resources, coal-measure gas outside source is concentrated in Central Asia-Russia, the United States, Canada and other countries/regions, while CBM inside source is largely concentrated in 12 countries. The production of coal-measure gas in China is expected to exceed 1000×10^8 m^3 by 2030, including (500–550)×10^8 m^3 conventional coal-measure gas,(400–450)×10^8 m^3 coal-measure tight gas, and (150–200)×10^8 m^3 CBM.展开更多
Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and ce...Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs.展开更多
<strong>Aim of the work:</strong> This study aims to assess the value of the surgical management in the improvement of the symptoms & signs of patients with Chiari malformation type 1 and radiological ...<strong>Aim of the work:</strong> This study aims to assess the value of the surgical management in the improvement of the symptoms & signs of patients with Chiari malformation type 1 and radiological follow up in adults.<strong> Patients and methods: </strong>This study included 30 consecutive patients with Chiari malformation type I who were indicated for surgery at neurosurgery department. Data were collected prospectively from the involved patients who were evaluated preoperatively and underwent evaluation by CT scanning of the brain & skull and MRI imaging of the brain and spine. CT and MRI were done as the routine follow up investigations for all patients. We operated through midline suboccipital craniectomy, durotomy in y shaped manner, shrinkage of cerebellar tonsils by bipolar electrocautery, duroplasty by fascia lata graft, watertight closure. <strong>Results: </strong>The assessment from E. J. N. S. (Egyptian Journal of Neurosurgery) vol. 24 no. 2 June 2009 used for evaluating the patients clinically. 18 patients reported good outcome, 6 fair, 6 poor. We evaluated the size of the syrinx if present preoperative in follow up. 15 (50%) patients showed marked reduction (more than or equal to 60%) in size of syrinx, 3 (10%) mild reduction (less than or equal to 30%) in size and 12 (40%) with no change. <strong>Conclusion:</strong> The Chiari type 1 malformation constitutes a controllable malformation with good outcomes. With current microsurgical techniques, the results of the bony decompression and duroplasty became excellent. Before undergoing surgical treatment for CM-I, symptomatic patients and their families should be given clear information about the success of treatment and potential complications.展开更多
基金the China Research and Pilot Test on Key Technology of Efficient Production of Changqing Tight Oil(Grant No.2021DJ2202).
文摘Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased.
基金supported by the Natural Science Foundation of China (grant No. 41772130)
文摘With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.
基金Project(2013CB228005)supported by the National Basic Research Program of China
文摘Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs.
基金supported by the National Natural Science Foundation of China (No. 41472112)the National Major Projects (No. 2011ZX05018002)
文摘Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and devel- opment modes of tight sandstone reservoirs are not deter- mined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distri- bution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mecha- nisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) "accumulation-densification" (AD), or the conventional tight type, (b) "densification-accumulation" (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reser- voir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depres- sions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is con- trolled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely dis- tributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and Turpan- Hami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions.
基金Supported by the National Key Basic Research and Development Program(973 Program),China
文摘Coal-measure gas is the natural gas generated by coal, carbonaceous shale, and dark shale in coal-measure strata. It includes resources of continuous-type coalbed methane (CBM), shale gas and tight gas reservoirs, and trap-type coal-bearing gas reservoirs. Huge in resources, it is an important gas source in the natural gas industry. The formation and distribution characteristics of coal-measure gas in San Juan, Surat, West Siberia and Ordos basins are introduced in this paper. By reviewing the progress of exploration and development of coal-measure gas around the world, the coal-measure gas is confirmed as an important strategic option for gas supply. This understanding is mainly manifested in three aspects. First, globally, the Eurasian east-west coal-accumulation belt and North American north-south coal-accumulation belt are two major coal-accumulation areas in the world, and the Late Carboniferous–Permian, Jurassic and end of Late Cretaceous–Neogene are 3 main coal-accumulation periods. Second, continuous-type and trap-type are two main accumulation modes of coal-measure gas;it is proposed that the area with gas generation intensity of greater than 10×10^8 m^3/km^2 is essential for the formation of large coal-measure gas field, and the CBM generated by medium- to high-rank coal is usually enriched in syncline, while CBM generated by low-rank coal is likely to accumulate when the source rock and caprock are in good configuration. Third, it is predicted that coal-measure gas around the world has huge remaining resources, coal-measure gas outside source is concentrated in Central Asia-Russia, the United States, Canada and other countries/regions, while CBM inside source is largely concentrated in 12 countries. The production of coal-measure gas in China is expected to exceed 1000×10^8 m^3 by 2030, including (500–550)×10^8 m^3 conventional coal-measure gas,(400–450)×10^8 m^3 coal-measure tight gas, and (150–200)×10^8 m^3 CBM.
文摘Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs.
文摘<strong>Aim of the work:</strong> This study aims to assess the value of the surgical management in the improvement of the symptoms & signs of patients with Chiari malformation type 1 and radiological follow up in adults.<strong> Patients and methods: </strong>This study included 30 consecutive patients with Chiari malformation type I who were indicated for surgery at neurosurgery department. Data were collected prospectively from the involved patients who were evaluated preoperatively and underwent evaluation by CT scanning of the brain & skull and MRI imaging of the brain and spine. CT and MRI were done as the routine follow up investigations for all patients. We operated through midline suboccipital craniectomy, durotomy in y shaped manner, shrinkage of cerebellar tonsils by bipolar electrocautery, duroplasty by fascia lata graft, watertight closure. <strong>Results: </strong>The assessment from E. J. N. S. (Egyptian Journal of Neurosurgery) vol. 24 no. 2 June 2009 used for evaluating the patients clinically. 18 patients reported good outcome, 6 fair, 6 poor. We evaluated the size of the syrinx if present preoperative in follow up. 15 (50%) patients showed marked reduction (more than or equal to 60%) in size of syrinx, 3 (10%) mild reduction (less than or equal to 30%) in size and 12 (40%) with no change. <strong>Conclusion:</strong> The Chiari type 1 malformation constitutes a controllable malformation with good outcomes. With current microsurgical techniques, the results of the bony decompression and duroplasty became excellent. Before undergoing surgical treatment for CM-I, symptomatic patients and their families should be given clear information about the success of treatment and potential complications.