期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs
1
作者 Fang Li Juan Wu +3 位作者 Haiyong Yi Lihong Wu Lingyun Du Yuan Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1015-1030,共16页
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s... Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results. 展开更多
关键词 Well spacing for primary development tight gas reservoir fractured horizontal well threshold pressure gradient stress sensitivity
下载PDF
Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions
2
作者 Yan Liu Tianli Sun +1 位作者 Bencheng Wang Yan Feng 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1165-1180,共16页
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte... A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small. 展开更多
关键词 tight sandstone gas reservoir fracture propagation flowback rate gas production law water production law influencing factor
下载PDF
Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
3
作者 Zhi-Qi Guo Xiao-Ying Qin Cai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3428-3440,共13页
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch... Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region. 展开更多
关键词 tight gas sandstone reservoirs Quantitative reservoir characterization Rock-physics-based framework Microfracture porosity Rock physics template
下载PDF
Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect
4
作者 Mingjing Lu Zenglin Wang +3 位作者 Aishan Li Liaoyuan Zhang Bintao Zheng Zilin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1269-1281,共13页
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s... A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs. 展开更多
关键词 tight gas reservoir gas-water two-phase flow numerical simulation fractured horizontal well gas slip effect
下载PDF
Investigation of influence factors on CO_(2) flowback characteristics and optimization of flowback parameters during CO_(2) dry fracturing in tight gas reservoirs
5
作者 Xiao-Mei Zhou Lei Li +4 位作者 Yong-Quan Sun Ran Liu Ying-Chun Guo Yong-Mao Hao Yu-Liang Su 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3553-3566,共14页
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a... CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters. 展开更多
关键词 CO_(2)fracturing tight gas reservoir Fracturing fluid flowback Parameter optimization
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
6
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
7
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation Oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Optimization of operational strategies for rich gas enhanced oil recovery based on a pilot test in the Bakken tight oil reservoir
8
作者 Xincheng Wan Lu Jin +4 位作者 Nicholas A.Azzolina Jin Zhao Xue Yu Steven A.Smith James A.Sorensen 《Petroleum Science》 SCIE EI CSCD 2023年第5期2921-2938,共18页
Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,p... Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,primary oil recovery in the Bakken is generally less than 10%of the estimated original oil in place.Gas huff‘n’puff(HnP)has been tested in the Bakken Formation as an enhanced oil recovery(EOR)method;however,most field pilot test results showed no significant incremental oil production.One of the factors affecting HnP EOR performance is premature gas breakthrough,which is one of the most critical issues observed in the field because of the presence of interwell fractures.Consequently,injected gas rapidly reaches adjacent production wells without contacting reservoir rock and increasing oil recovery.Proper conformance control is therefore needed to avoid early gas breakthrough and improve EOR performance.In this study,a rich gas EOR pilot in the Bakken was carefully analyzed to collect the essential reservoir and operational data.A simulation model with 16 wells was then developed to reproduce the production history and predict the EOR performance with and without conformance control.EOR operational strategies,including single-and multiple-well HnP,with different gas injection constraints were investigated.The simulation results of single-well HnP without conformance control showed that a rich gas injection rate of at least 10 MMscfd was needed to yield meaningful incremental oil production.The strategy of conformance control via water injection could significantly improve oil production in the HnP well,but injecting an excessive amount of water also leads to water breakthrough and loss of oil production in the offset wells.By analyzing the production performance of the wells individually,the arrangement of wells was optimized for multiple-well HnP EOR.The multiwell results showed that rich gas EOR could improve oil production up to 7.4%by employing conformance control strategies.Furthermore,replacing rich gas with propane as the injection gas could result in 14%of incremental oil production. 展开更多
关键词 Rich gas injection Bakken tight oil reservoir EOR strategies Conformance control Embedded discrete fracture model
下载PDF
Analysis of Reservoir Forming Conditions and Prediction of Continuous Tight Gas Reservoirs for the Deep Jurassic in the Eastern Kuqa Depression,Tarim Basin 被引量:15
9
作者 ZOU Caineng JIA Jinhua +1 位作者 TAO Shizhen TAO Xiaowan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1173-1186,共14页
The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ... The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential. 展开更多
关键词 forming condition continuous tight gas reservoir deep Jurassic eastern Kuqa Depression
下载PDF
Geological characteristics and accumulation mechanisms of the "continuous" tight gas reservoirs of the Xu2 Member in the middle-south transition region,Sichuan Basin,China 被引量:12
10
作者 Zou Caineng Gong Yanjie +1 位作者 Tao Shizhen Liu Shaobo 《Petroleum Science》 SCIE CAS CSCD 2013年第2期171-182,共12页
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro... "Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs. 展开更多
关键词 Geological characteristics accumulation mechanism "continuous" tight gas reservoir Xu2Member middle-south transition region Sichuan Basin
下载PDF
Blasingame production decline type curves for analysing a multi-fractured horizontal well in tight gas reservoirs 被引量:4
11
作者 魏明强 段永刚 +3 位作者 陈伟 方全堂 李政澜 郭希冉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期394-401,共8页
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo... Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs. 展开更多
关键词 tight gas reservoir fractured horizontal well unstructured grid production decline type curves
下载PDF
A new model for predicting irreducible water saturation in tight gas reservoirs 被引量:2
12
作者 Yu-Liang Su Jin-Gang Fu +4 位作者 Lei Li Wen-Dong Wang Atif Zafar Mian Zhang Wei-Ping Ouyang 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1087-1100,共14页
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa... The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature. 展开更多
关键词 Fractal theory Stress dependence effect Capillary model tight sandstone gas reservoir Irreducible water saturation
下载PDF
Porosity Calculation of Tight Sand Gas Reservoirs with GA-CM Hybrid Optimization Log Interpretation Method 被引量:1
13
作者 Ya-Nan Duan Bao-Zhi Pan +2 位作者 Xue Han Hai-Tao Zhang Xiao-Ming Yang 《Journal of Geoscience and Environment Protection》 2014年第3期92-98,共7页
Tight sand gas reservoirs are our country’s fairly rich unconventional natural gas resources, and their exploration and development is of prime importance. Sulige Gas Field which located in the northern Ordos Basin i... Tight sand gas reservoirs are our country’s fairly rich unconventional natural gas resources, and their exploration and development is of prime importance. Sulige Gas Field which located in the northern Ordos Basin is tight sand gas reservoirs. It is typically featured by low porosity and low permeability, and the error of porosity calculation by traditional methods is larger. Multicomponent explanation model is built by analyzing the thin slice data, and the objective function is got according to the concept of optimization log interpretation method. This paper puts the Genetic Algorithm and the Complex Algorithm together to form the GA-CM Hybrid Algorithm for searching the optimal solution of the objective function, getting the porosity of tight sandstone gas reservoirs. The deviation got by this method is lesser compared with the core porosity, with a high reliability. 展开更多
关键词 POROSITY tight SAND gas reservoirs LOW POROSITY and LOW Permeability GA-CM Optimization Multicomponent Explanation Model
下载PDF
Types and genesis of sweet spots in the tight sandstone gas reservoirs:Insights from the Xujiahe Formation,northern Sichuan Basin,China
14
作者 Yanqing Huang Ai Wang +2 位作者 Kaihua Xiao Tian Lin Wujun Jin 《Energy Geoscience》 2022年第3期270-281,共12页
Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter r... Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs. 展开更多
关键词 Sweet spot Evaluation standard tight sandstone gas reservoirs Xujiahe Formation Yuanba area Northeastern Sichuan Basin
下载PDF
A Study of Solid-Free Drilling Fluid for Tight Gas Reservoirs
15
作者 Wenwu Zheng Fu Liu +3 位作者 Jing Han Binbin He Xintong Li Qichao Cao 《Open Journal of Yangtze Oil and Gas》 2021年第1期13-23,共11页
This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to h... This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to high temperature and high salt, was tested, and concluded that its gelling properties, salt and temperature resistance, and environmental protection were all in line with industry requirements. The final drilling fluid formula was developed as: water + (0.3% ~ 0.5%) NaOH + 5% KCl + 2% WGL-1 + 5% NaCl + (1.0% ~ 2.0%) HBFR Anti-high temperature fluid loss agent + 2% Polyol + (1.5% ~ 2.0%) SDL-1 Lubricant + 0.4% A4O1. The performance of the liquid was tested for temperature resistance, inhibition, gas formation protection effect, plugging performance, and static settlement stability. It was concluded that the temperature resistance performance is satisfied at 150°C, and the cuttings recovery rate is as high as 96.78%. It has good performance in inhibiting water dispersion and swelling of cuttings. The permeability recovery value reaches 88.9%, which meets the requirements of gas formation protection. The SSSI value shows that its settlement stability is good;under high temperature and high pressure, its sealing performance is good. This drilling fluid system has achieved the expected results and laid a foundation for further promoting the development of solid-free drilling fluid systems. The future development direction of solid-free drilling fluids is pointed out, to the improvement of properties to be applied in high temperature environment and have high salt resistance capacity. 展开更多
关键词 tight gas reservoir Solid-Free Drilling Fluid Temperature Resistance Environmental Protection Weak Gel
下载PDF
Characteristics of Tight Sandstone Reservoirs and Controls of Reservoir Quality: A Case Study of He 8 Sandstones in the Linxing Area, Eastern Ordos Basin, China 被引量:5
16
作者 GAO Xiangdong WANG Yanbin +4 位作者 LI Yong GUO Hui NI Xiaoming WU Xiang ZHAO Shihu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期637-659,共23页
Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of th... Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of thin section,scanning electron microscopy(SEM),cathode luminescence(CL),nuclear magnetic resonance(NMR),X-ray diffraction(XRD),N2 porosity and permeability,micro-resistivity imaging log(MIL)and three-dimensional seismic data analysis,this work discussed the reservoir characteristics of the member 8 of the Permian Xiashihezi Formation(He 8 sandstones)in the Linxing area of eastern Ordos Basin,determined the factors affecting reservoir quality,and revealed the formation mechanism of relatively high-permeability areas.The results show that the He 8 sandstones in the Linxing area are mainly composed of feldspathic litharenites,and are typical tight sandstones(with porosity<10%and permeability<1 mD accounting for 80.3%of the total samples).Rapid burial is the main reason for reservoir densification,which resulted in 61%loss of the primary porosity.In this process,quartz protected the original porosity by resisting compaction.The cementation(including carbonate,clay mineral and siliceous cementation)further densified the sandstone reservoirs,reducing the primary porosity with an average value of 28%.The calcite formed in the eodiagenesis occupied intergranular pores and affected the formation of the secondary pores by preventing the later fluid intrusion,and the Fe-calcite formed in the mesodiagenetic stage densified the sandstones further by filling the residual intergranular pores.The clay minerals show negative effects on reservoir quality,however,the chlorite coatings protected the original porosity by preventing the overgrowth of quartz.The dissolution of feldspars provides extensive intergranular pores which constitute the main pore type,and improves the reservoir quality.The tectonic movements play an important role in improving the reservoir quality.The current tectonic traces of the study area are mainly controlled by the Himalayan movement,and the high-permeability reservoirs are mainly distributed in the anticline areas.Additionally,the improvement degree(by tectonic movements)of reservoir quality is partly controlled by the original composition of the sandstones.Thus,the selection of potential tight gas well locations in the study area should be focused on the anticline areas with relatively good original reservoir quality.And the phenomena can be referenced for other fluvial tight sandstone basins worldwide. 展开更多
关键词 tight gas reservoir quality high-permeability reservoirs Linxing area EASTERN ORDOS Basin
下载PDF
Laboratory to field scale assessment for EOR applicability in tight oil reservoirs 被引量:5
17
作者 Fahad Iqbal Syed Amirmasoud Kalantari Dahaghi Temoor Muther 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2131-2149,共19页
Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery f... Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale. 展开更多
关键词 UEOR UEOR pilots Shale oil tight oil reservoir gas injection Hydraulic fracture Huff-n-puff
下载PDF
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir 被引量:3
18
作者 Min Wang Shengnan Chen Menglu Lin 《Petroleum Science》 SCIE CAS CSCD 2018年第2期305-318,共14页
The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion o... The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion of gas leaves the valuable condensate behind. In this paper, three enhanced gas recovery (EGR) methods including produced gas injection, CO2 injection and water injection are investigated to increase the well productivity for a tight gas condensate reservoir in the Montney Formation, Canada. The production performance of the three EGR methods is compared and their economic feasibility is evaluated. Sensitivity analysis of the key factors such as primary production duration, bottom-hole pressures, and fracture conductivity is conducted and their effects on the well production performance are analyzed. Results show that, compared with the simple depletion method, both the cumulative gas and condensate production increase with fluids injected. Produced gas injection leads to both a higher gas and condensate production compared with those of the CO2 injection, while waterflooding suffers from injection difficulty and the corresponding low sweep efficiency. Meanwhile, the injection cost is lower for the produced gas injection due to the on-site available gas source and minimal transport costs, gaining more economic benefits than the other EGR methods. 展开更多
关键词 tight gas condensate reservoirs Enhanced/improved gas recovery Produced gas injection Sensitivity study Economic benefit
下载PDF
Sedimentology and Ichnology of Upper Montney Formation Tight Gas Reservoir, Northeastern British Columbia, Western Canada Sedimentary Basin 被引量:3
19
作者 Edwin I. Egbobawaye 《International Journal of Geosciences》 2016年第12期1357-1411,共56页
Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as ... Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada. 展开更多
关键词 Montney Formation SEDIMENTOLOGY ICHNOLOGY tight gas reservoir Oil and gas Petroleum Geology British Columbia Western Canada Sedimentary Basin
下载PDF
A reservoir drying method for enhancing recovery of tight gas
20
作者 ZHANG Liehui XIONG Yu +5 位作者 ZHAO Yulong TANG Hongming GUO Jingjing JIA Chunsheng LEI Qiang WANG Binghe 《Petroleum Exploration and Development》 CSCD 2022年第1期144-155,共12页
Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, ... Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs were investigated through lab experiment. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested.The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in micropores of formation matrix were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization in combination of NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability.The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation.The drying effect can greatly reduce water saturation of tight reservoir and improve the gas seepage capacity in near wellbore and fractures. This work can provide guidance for developing new measures in enhancing recovery of tight gas reservoirs. 展开更多
关键词 tight gas reservoir drying enhancing gas recovery water-blocking removal drying agent seepage ability
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部