The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semi...The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si-Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.展开更多
The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the num...The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the numerical calculation of GF for devices with arbitrary shapes and multi-terminal configurations. These algorithms can be used to calculate the specified blocks related to the transmission, the diagonals needed by the local density of states calculation, and the full matrix of GF, to meet different calculation levels. In addition, the algorithms for the non-equilibrium occupation and current flow are also given. All these algorithms are described using the basic theory of GF, based on a new partition strategy of the computational area. We apply these algorithms to the tight-binding graphene lattice to manifest their stability and efficiency. We also discuss the physics of the calculation results.展开更多
A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism underlying the strain effects on electronic structures of graphene and graphene nanoribbons(GNRs).It provides a...A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism underlying the strain effects on electronic structures of graphene and graphene nanoribbons(GNRs).It provides a unified and precise formulation of the strain effects under various circumstances-including the shift of the Fermi(Dirac)points,the change in band gap of armchair GNRs with uniaxial strain in a zigzag pattern and its insensitivity to shear strain,and the variation of the k-range of edge states in zigzag GNRs under uniaxial and shear strains which determine the gap behavior via the spin polarization interaction.展开更多
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the...Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.展开更多
The electronic structures and optical properties of graphyne consisting of sp-and sp 2-hybridized carbon atoms are studied using first-principles calculations.A tight-binding model of the 2p z orbitals are proposed to...The electronic structures and optical properties of graphyne consisting of sp-and sp 2-hybridized carbon atoms are studied using first-principles calculations.A tight-binding model of the 2p z orbitals are proposed to describe the electronic bands near the Fermi level.The results show that the natural band gap of graphyne originates from the inhomogeneous bindings between differently-hybridized carbon atoms.The interlayer interactions of bulk graphyne narrow the band gap to 0.16 eV and result in redshift of the optical spectral peaks as compared to single-layered graphyne.展开更多
Graphene nanoribbons(GNRs)have attracted great research interest because of their widely tunable and unique electronic properties.The required atomic precision of GNRs can be realized via on-surface synthesis method.I...Graphene nanoribbons(GNRs)have attracted great research interest because of their widely tunable and unique electronic properties.The required atomic precision of GNRs can be realized via on-surface synthesis method.In this work,through a surface assisted reaction we have longitudinally fused the pyrene-based graphene nanoribbons(pGNR)of different lengths by a pentagon ring junction,and built a molecular junction structure on Au(111).The electronic properties of the structure are studied by scanning tunneling spectroscopy(STS)combined with tight binding(TB)calculations.The pentagon ring junction shows a weak electronic coupling effect on graphene nanoribbons,which makes the electronic properties of the two different graphene nanoribbons connected by a pentagon ring junction analogous to type I semiconductor heterojunctions.展开更多
Hidden spin polarization refers to that doubly degenerate bands protected by combined inversion and time-reversal symmetry in nonmagnetic inversion-symmetric crystals could have opposite non-zero local spin polarizati...Hidden spin polarization refers to that doubly degenerate bands protected by combined inversion and time-reversal symmetry in nonmagnetic inversion-symmetric crystals could have opposite non-zero local spin polarizations, which are spatially separated in two real-space sectors paired by the inversion symmetry. Since its first prediction from ab initio calculation, hidden spin polarization has inspired tremendous interest and has been observed experimentally due to its intriguing fundamental properties as well as the great potential for applications. Moving forward, the search for moment-dependent spin splitting has also been extended to antiferromagnets even without considering spin-orbit coupling. This paper systematically reviews recent works in this field with a focus on basic concepts and material realization. It also details several remaining bottlenecks and suggests possible avenues for future research.展开更多
The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structur...The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structure have been calculated by using the tight-binding method within the Extended Huckel approximation (EHT). The energy bands, densities of states and crystal orbital overlap populations are given. The relationship between the bonding properties and the superconducting transition temperatures (T-c) of them is discussed. The influences of various kinds of metallic atoms and changes of bond lengths on T-c are also discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50775101)the New Century Excellent Talents (Grant No. NCET-04-0515)+2 种基金the Jiangsu Provincial Science and Technology Supporting Project,China (Grant No. BE2008030)Qing Lan Project (2008-04)Jiangsu University Natural Science Foundation of China (Grant No. 07KJB430023)
文摘The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si-Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10904040 and 10974058)
文摘The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the numerical calculation of GF for devices with arbitrary shapes and multi-terminal configurations. These algorithms can be used to calculate the specified blocks related to the transmission, the diagonals needed by the local density of states calculation, and the full matrix of GF, to meet different calculation levels. In addition, the algorithms for the non-equilibrium occupation and current flow are also given. All these algorithms are described using the basic theory of GF, based on a new partition strategy of the computational area. We apply these algorithms to the tight-binding graphene lattice to manifest their stability and efficiency. We also discuss the physics of the calculation results.
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.50821061,20973013)the Ministry of Science and Technology of China(Grants No.2007CB936203)the Fundamental Research Funds for the Central Universities.
文摘A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism underlying the strain effects on electronic structures of graphene and graphene nanoribbons(GNRs).It provides a unified and precise formulation of the strain effects under various circumstances-including the shift of the Fermi(Dirac)points,the change in band gap of armchair GNRs with uniaxial strain in a zigzag pattern and its insensitivity to shear strain,and the variation of the k-range of edge states in zigzag GNRs under uniaxial and shear strains which determine the gap behavior via the spin polarization interaction.
基金Thanks to Professor Zhipei Sun (Aalto University, Finland) for valuable discussions. This work was supported by the International Cooperative Program (Grant No. 2014DFR10780), the National Natural Science Foundation of China (Grant No. 61275105), tile Natural Science Foundation of Shaanxi Province (Grant No. 2014JM2-1008), and the State Key Laboratory of Transient Optics and Photonic Technology 2015 An- nual Open Fund (Grant No. SKLST200915).
文摘Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
基金supported by the National Basic Research Program of China(2012CB932302)the National Natural Science Foundation of China(10974119)the Natural Science Fund for Distinguished Young Scholars of Shandong Province(JQ201001)
文摘The electronic structures and optical properties of graphyne consisting of sp-and sp 2-hybridized carbon atoms are studied using first-principles calculations.A tight-binding model of the 2p z orbitals are proposed to describe the electronic bands near the Fermi level.The results show that the natural band gap of graphyne originates from the inhomogeneous bindings between differently-hybridized carbon atoms.The interlayer interactions of bulk graphyne narrow the band gap to 0.16 eV and result in redshift of the optical spectral peaks as compared to single-layered graphyne.
基金the National Natural Science Foundation of China(No.22072086)The Swiss National Science Foundation(Nos.200020_182015 and 200021_172527)supported this work。
文摘Graphene nanoribbons(GNRs)have attracted great research interest because of their widely tunable and unique electronic properties.The required atomic precision of GNRs can be realized via on-surface synthesis method.In this work,through a surface assisted reaction we have longitudinally fused the pyrene-based graphene nanoribbons(pGNR)of different lengths by a pentagon ring junction,and built a molecular junction structure on Au(111).The electronic properties of the structure are studied by scanning tunneling spectroscopy(STS)combined with tight binding(TB)calculations.The pentagon ring junction shows a weak electronic coupling effect on graphene nanoribbons,which makes the electronic properties of the two different graphene nanoribbons connected by a pentagon ring junction analogous to type I semiconductor heterojunctions.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.11925407)the National Natural Science Foundation of China(Grant No.11904359)+2 种基金the Basic Science Center Program of the National Natural Science Foundation of China(Grant No.61888102)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBSLY-JSC019)the National Key Research and Development Program of China(Grant No.2018YFB2202800)。
文摘Hidden spin polarization refers to that doubly degenerate bands protected by combined inversion and time-reversal symmetry in nonmagnetic inversion-symmetric crystals could have opposite non-zero local spin polarizations, which are spatially separated in two real-space sectors paired by the inversion symmetry. Since its first prediction from ab initio calculation, hidden spin polarization has inspired tremendous interest and has been observed experimentally due to its intriguing fundamental properties as well as the great potential for applications. Moving forward, the search for moment-dependent spin splitting has also been extended to antiferromagnets even without considering spin-orbit coupling. This paper systematically reviews recent works in this field with a focus on basic concepts and material realization. It also details several remaining bottlenecks and suggests possible avenues for future research.
基金Project supported by the National Natural Science Foundation of China and the Foundation of the State Key Laboratory of Structural Chemistry of China.
文摘The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structure have been calculated by using the tight-binding method within the Extended Huckel approximation (EHT). The energy bands, densities of states and crystal orbital overlap populations are given. The relationship between the bonding properties and the superconducting transition temperatures (T-c) of them is discussed. The influences of various kinds of metallic atoms and changes of bond lengths on T-c are also discussed.