The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model...The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model were simulated with various surface roughness parameters including skewness,kurtosis and the roughness directional pattern.The results indicated that the fluid load capacity was not only affected by the RMS roughness but also by the surface roughness characteristics.The fluid load capacity was dramatically affected by the roughness directional pattern.The skewness had a lower effect than the roughness directional pattern.The kurtosis had no notable effect on the fluid load capacity.It was possible for the fluid load capacity of the tilt pad thrust bearings to be improved by the skewness and roughness direction pattern control.展开更多
In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which ...In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which are also considered for certain applications may show some advantages,as well.Although material selection is of secondary importance in a full film lubrication regime it becomes important in mixed friction conditions,which is crucial for bearings with frequent starts and stops.Experimental research aimed at studying the performance of fluid film bearings in the specific operating regime,including the transition to mixed friction,is described in the paper.The tests were carried out on four tilting pad bearings of different material compositions:Steel/bronze,DLC/steel,steel/polyether ether ketone(PEEK),and steel/Babbitt.The tests comprised stopping under load and reproduction of the Stribeck curve by decreasing rotational speed to very low values,and observing the changes of friction force during the transition to mixed friction regime.Analysis of the transition conditions and other results showed clear differences between the tested bearings,illustrating the feasibility of less popular material compositions for bearings operating in specific conditions.More specifically,the DLC/steel bearing was demonstrating superior performance,i.e.lower friction,transition to mixed friction occurring at higher load,and more stable performance at start-stop regime over the other tested bearings.展开更多
基金the National Basic Research Program of China (973),the National Natural Science Foundation of China
文摘The effects of surface roughness characteristics on the fluid load capacity of tilt pad thrust bearings with water lubrication were studied by the average flow model.The flow factors utilized in the average flow model were simulated with various surface roughness parameters including skewness,kurtosis and the roughness directional pattern.The results indicated that the fluid load capacity was not only affected by the RMS roughness but also by the surface roughness characteristics.The fluid load capacity was dramatically affected by the roughness directional pattern.The skewness had a lower effect than the roughness directional pattern.The kurtosis had no notable effect on the fluid load capacity.It was possible for the fluid load capacity of the tilt pad thrust bearings to be improved by the skewness and roughness direction pattern control.
文摘In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which are also considered for certain applications may show some advantages,as well.Although material selection is of secondary importance in a full film lubrication regime it becomes important in mixed friction conditions,which is crucial for bearings with frequent starts and stops.Experimental research aimed at studying the performance of fluid film bearings in the specific operating regime,including the transition to mixed friction,is described in the paper.The tests were carried out on four tilting pad bearings of different material compositions:Steel/bronze,DLC/steel,steel/polyether ether ketone(PEEK),and steel/Babbitt.The tests comprised stopping under load and reproduction of the Stribeck curve by decreasing rotational speed to very low values,and observing the changes of friction force during the transition to mixed friction regime.Analysis of the transition conditions and other results showed clear differences between the tested bearings,illustrating the feasibility of less popular material compositions for bearings operating in specific conditions.More specifically,the DLC/steel bearing was demonstrating superior performance,i.e.lower friction,transition to mixed friction occurring at higher load,and more stable performance at start-stop regime over the other tested bearings.