There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. ...There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. For critical missions (civilian or military), it is imperative that mechanical complexity is kept to a minimum to help achieve mission success. This work proposes that the tried-and-true radio controlled (RC) aerobatic airplanes can be implemented as basis for fixed-wing UAVs having both speed and vertical takeoff and landing (VTOL) capabilities. These powerful and highly maneuverable airplanes have non-rotatable nacelles, yet capable of deep stall maneuvers. The power requirements for VTOL and level flight of an aerobatic RC airplane are evaluated and they are compared to those of a RC helicopter of similar flying weight. This work provides quantitative validation that commercially available RC aerobatic airplanes can serve as platform to build VTOL capable fixed-wing UAVs that are agile, cost effective, reliable and easy maintenance.展开更多
Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especiall...Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.展开更多
Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-a...Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-averaged Navier-Stokes(RANS)equations and finite element methods based on the detailed aerodynamic and structural model are established,in which the aerodynamic dynamic meshes adopt the unstructured dynamic meshes based on the combination of spring-based smoothing and local remeshing methods,and the lower-upper symmetric-Gauss-Seidel(LU-SGS)iteration and Harten-Lax-van Leer-Einfeldt-Wada(HLLEW)space discrete methods based on the shear stress transport(SST)turbulence model are used to calculate the aerodynamic force.The constraints of the rudder motions are fixed at the end of structural model of the flying wing UAV,and the structural geometric nonlinearities are also considered in the flying wing UAV with a high aspect ratio.The interfaces between structural and aerodynamic models are built with an exact match surface where load transferring is performed based on 3Dinterpolation.The flying wing UAV transonic buzz responses based on the aerodynamic structural coupling method are studied,and the rudder buzz responses and aileron,elevator and flap vibration responses caused by rudder motion are also investigated.The effects of attack,height,rotating angular frequency and Mach number under transonic conditions on the flying wing UAV rudder buzz responses are discussed.The results can be regarded as a reference for the flying wing UAV engineering vibration analysis.展开更多
A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-...A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.展开更多
This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation be...This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation because if disordered they do not work any better than a single vehicle,and a single vehicle is limited by its undeveloped intelligence and insufficient load. Among the many formation methods,consensus has attracted much attention because of its effectiveness and simplicity. However,at the beginning of convergence,overshoot and oscillation are universal because of the limitation of communication and a lack of forecasting,which are inborn shortcomings of consensus. It is natural to modify this method with lots of optimizers. In order to reduce overshoot and smooth trajectories, this paper first adopted particle swarm optimization( PSO), then pigeon-inspired optimization( PIO) to modify the consensus. PSO is a very popular optimizer,while PIO is a new method,both work but still retain disadvantages such as residual oscillation. As a result,it was necessary to modify PIO,and a pigeon-inspired optimization with a slow diving strategy( SD-PIO) is proposed. Convergence analysis was performed on the SD-PIO based on the Banach fixed-point theorem and conditions sufficient for stability were achieved.Finally,a series of comparative simulations were conducted to verify the feasibility and effectiveness of the proposed approach.展开更多
The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technica...The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.展开更多
To overcome the problems encountered in predicting the endurance of electricpowered fixed-wing unmanned aerial vehicles(UAVs),which were stemmed from the dynamic changes in electric power system efficiency and battery...To overcome the problems encountered in predicting the endurance of electricpowered fixed-wing unmanned aerial vehicles(UAVs),which were stemmed from the dynamic changes in electric power system efficiency and battery discharge characteristics under different operating conditions,the required battery power model and battery discharge model were studied.The required battery power model was determined using an approximate model of electric power system efficiency based on wind tunnel testing and the self-adaptive penalty function.Furthermore,current correction and ambient temperature correction terms were proposed for the trained Kriging model representing the discharge characteristics under standard operation,and then the discharged capacity-terminal voltage model was established.Through numerical integration of this model with the required battery power model,the electric-powered fixed-wing UAV endurance prediction model was obtained.Laboratory tests indicated that the proposed endurance model could precisely calculate the battery discharge time and accurately describe the battery discharge process.The similarity of the theoretical and flight test results reflected the accuracy of the proposed endurance model as well as the importance of considering dynamic changes in power system efficiency in endurance calculations.The proposed endurance model meeting precision requirements can be used in practical engineering applications.展开更多
文摘There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. For critical missions (civilian or military), it is imperative that mechanical complexity is kept to a minimum to help achieve mission success. This work proposes that the tried-and-true radio controlled (RC) aerobatic airplanes can be implemented as basis for fixed-wing UAVs having both speed and vertical takeoff and landing (VTOL) capabilities. These powerful and highly maneuverable airplanes have non-rotatable nacelles, yet capable of deep stall maneuvers. The power requirements for VTOL and level flight of an aerobatic RC airplane are evaluated and they are compared to those of a RC helicopter of similar flying weight. This work provides quantitative validation that commercially available RC aerobatic airplanes can serve as platform to build VTOL capable fixed-wing UAVs that are agile, cost effective, reliable and easy maintenance.
文摘Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.
基金supported by the Natural Science Foundation of China(No.61074155)the Shaanxi Provincial Natural Science Foundation of China(No.2013JM015)
文摘Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-averaged Navier-Stokes(RANS)equations and finite element methods based on the detailed aerodynamic and structural model are established,in which the aerodynamic dynamic meshes adopt the unstructured dynamic meshes based on the combination of spring-based smoothing and local remeshing methods,and the lower-upper symmetric-Gauss-Seidel(LU-SGS)iteration and Harten-Lax-van Leer-Einfeldt-Wada(HLLEW)space discrete methods based on the shear stress transport(SST)turbulence model are used to calculate the aerodynamic force.The constraints of the rudder motions are fixed at the end of structural model of the flying wing UAV,and the structural geometric nonlinearities are also considered in the flying wing UAV with a high aspect ratio.The interfaces between structural and aerodynamic models are built with an exact match surface where load transferring is performed based on 3Dinterpolation.The flying wing UAV transonic buzz responses based on the aerodynamic structural coupling method are studied,and the rudder buzz responses and aileron,elevator and flap vibration responses caused by rudder motion are also investigated.The effects of attack,height,rotating angular frequency and Mach number under transonic conditions on the flying wing UAV rudder buzz responses are discussed.The results can be regarded as a reference for the flying wing UAV engineering vibration analysis.
基金supported by the National Defense Basic Scientific Research Program of China(No.A2520110006)the Fundamental Research Funds for the Central Universities(Nos.NJ20130001,NJ2012014)
文摘A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.
基金Natural Science Foundation of China under Grant(61333004)
文摘This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation because if disordered they do not work any better than a single vehicle,and a single vehicle is limited by its undeveloped intelligence and insufficient load. Among the many formation methods,consensus has attracted much attention because of its effectiveness and simplicity. However,at the beginning of convergence,overshoot and oscillation are universal because of the limitation of communication and a lack of forecasting,which are inborn shortcomings of consensus. It is natural to modify this method with lots of optimizers. In order to reduce overshoot and smooth trajectories, this paper first adopted particle swarm optimization( PSO), then pigeon-inspired optimization( PIO) to modify the consensus. PSO is a very popular optimizer,while PIO is a new method,both work but still retain disadvantages such as residual oscillation. As a result,it was necessary to modify PIO,and a pigeon-inspired optimization with a slow diving strategy( SD-PIO) is proposed. Convergence analysis was performed on the SD-PIO based on the Banach fixed-point theorem and conditions sufficient for stability were achieved.Finally,a series of comparative simulations were conducted to verify the feasibility and effectiveness of the proposed approach.
基金co-supported by the National Natural Science Foundation of China (Nos. 61503369 and 61433016)
文摘The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.
文摘To overcome the problems encountered in predicting the endurance of electricpowered fixed-wing unmanned aerial vehicles(UAVs),which were stemmed from the dynamic changes in electric power system efficiency and battery discharge characteristics under different operating conditions,the required battery power model and battery discharge model were studied.The required battery power model was determined using an approximate model of electric power system efficiency based on wind tunnel testing and the self-adaptive penalty function.Furthermore,current correction and ambient temperature correction terms were proposed for the trained Kriging model representing the discharge characteristics under standard operation,and then the discharged capacity-terminal voltage model was established.Through numerical integration of this model with the required battery power model,the electric-powered fixed-wing UAV endurance prediction model was obtained.Laboratory tests indicated that the proposed endurance model could precisely calculate the battery discharge time and accurately describe the battery discharge process.The similarity of the theoretical and flight test results reflected the accuracy of the proposed endurance model as well as the importance of considering dynamic changes in power system efficiency in endurance calculations.The proposed endurance model meeting precision requirements can be used in practical engineering applications.