A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poo...A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poor generalization of rolling bearing.Firstly,MTF is used to encode one-dimensional time series vibration sig-nals and convert them into time-dependent and unique two-dimensional feature images.Then,the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification.This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University to experimentally verify the effectiveness and superiority of the proposed method.The generalization performance of the proposed method is tested under the variable load condition and different signal-to-noise ratios(SNRs).The experimental results show that the average accuracy of the proposed method under different working conditions is 99.2%without adding noise.The accuracy under different working conditions from 0 to 1 HP is 100%.When the SNR is 0 dB,the average accuracy of the proposed method can still reach 98.7%under varying working conditions.Therefore,the bearing fault diagnosis method proposed in this paper is characterized by high accuracy,strong anti-noise ability,and generalization.Moreover,the proposed method can also overcome the influence of variable working conditions on diagnosis accuracy,providing method support for the accurate diagnosis of bearing faults under strong noise and variable working conditions.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of...Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.展开更多
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler...The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.展开更多
The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation f...The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibr...In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators suc...To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es...High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.展开更多
As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect ...As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect the normal operation of highspeed trains.Therefore,bearing temperature is one of the key parameters to be monitored in the online monitoring system for trains.Based on the thermal network method,this paper establishes a thermal network model for the axle box bearing,considering the radial thermal deformation of the double-row tapered roller bearing components caused by the oil film characteristics and the temperature variations of the lubricating grease.A thermo-mechanical coupling model for the grease-lubricated double-row tapered roller axle box bearing of high-speed trains with track irregularity excitation is established.The correctness of the model is verified using the test bench data,and the temperature of the bearing at different rotational speeds,loads,fault sizes,and ambient temperatures are investigated.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key ...Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key component that directly determines the fatigue life of a cam-lobe radial-piston hydraulic motor.However,compact geometry and complex loads render MCRB susceptible to fatigue failure,highlighting the need for an optimized MCRB to achieve longer fatigue life and higher reliability.Therefore,this study proposes an innovative geometry optimization method for an MCRB to improve its fatigue life.In this method,a quasi-static model was developed to calculate the load distribution,with the fatigue life of the MCRB calculated using both basic dynamic loading and load distribution.Subsequently,a genetic algorithm was used to obtain the optimized geometry parameters,which significantly improved the fatigue life of the MCRB.Finally,a loading test was conducted on a hydraulic motor installed with both the initial and optimized MCRB to validate the effectiveness of the proposed optimization method.This study provides a theoretical guideline for optimizing the design of MCRB,thereby increasing the fatigue life of hydraulic motors.展开更多
The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile unde...The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile under the same loading conditions.With the increase in horizontal loading speed,the ultimate horizontal bearing capacity of the two piles also increases,and the difference decreases gradually.Moreover,the influence of vertical loading on the horizontal bearing capacity of screw pile and monopile is studied at the horizontal loading speed of 2 mm s-1.The findings indicate that vertical load evidently affects the horizontal bearing capacity of common piles,but slightly influences the horizontal bearing capacity of screw piles.展开更多
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o...Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.展开更多
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa...Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models.展开更多
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be eval...Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.展开更多
Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the de...Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.展开更多
基金supported by Hebei Natural Science Foundation under Grant No.E2024402079Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering)under Grant No.202206.
文摘A bearing fault diagnosis method based on the Markov transitionfield(MTF)and SEnet(SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions,low fault diagnosis accuracy,and poor generalization of rolling bearing.Firstly,MTF is used to encode one-dimensional time series vibration sig-nals and convert them into time-dependent and unique two-dimensional feature images.Then,the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification.This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University to experimentally verify the effectiveness and superiority of the proposed method.The generalization performance of the proposed method is tested under the variable load condition and different signal-to-noise ratios(SNRs).The experimental results show that the average accuracy of the proposed method under different working conditions is 99.2%without adding noise.The accuracy under different working conditions from 0 to 1 HP is 100%.When the SNR is 0 dB,the average accuracy of the proposed method can still reach 98.7%under varying working conditions.Therefore,the bearing fault diagnosis method proposed in this paper is characterized by high accuracy,strong anti-noise ability,and generalization.Moreover,the proposed method can also overcome the influence of variable working conditions on diagnosis accuracy,providing method support for the accurate diagnosis of bearing faults under strong noise and variable working conditions.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.
基金supported by the National Key Research and Development Project(Grant Number 2023YFB3709601)the National Natural Science Foundation of China(Grant Numbers 62373215,62373219,62073193)+2 种基金the Key Research and Development Plan of Shandong Province(Grant Numbers 2021CXGC010204,2022CXGC020902)the Fundamental Research Funds of Shandong University(Grant Number 2021JCG008)the Natural Science Foundation of Shandong Province(Grant Number ZR2023MF100).
文摘The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.
基金supported by National Natural Science Foundation of China (Grant No. 50635060)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA050501)+1 种基金National Key Basic Research Program of China (973 Program,Grant No. 2007CB707705,Grant No. 2007CB707706)Research Funds for the Central Universities of China
文摘The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金Project(2012CB026000)supported by the National Basic Research Program of China(973 Program)
文摘In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M721395)the National Natural Science Foundation of China(Grant No.72072089).
文摘To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金financial support provided by the National Key Research and Development Project of China(Grant No.2022YFB3402901)the National Natural Science Foundation of China(Grant No.52305070,52302467)。
文摘High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.
基金Project supported by the National Natural Science Foundation of China(Nos.12393780,12032017,and 12002221)the Key Scientific Research Projects of China Railway Group(No.N2021J032)+2 种基金the College Education Scientific Research Project of Hebei Province of China(No.JZX2024006)the S&T Program of Hebei Province of China(No.21567622H)the National Scholarship Council of China。
文摘As an important component of the running gear of high-speed trains,axle box bearings can cause lubricating grease failure and damage to bearing components under continuous high-temperature operation,which will affect the normal operation of highspeed trains.Therefore,bearing temperature is one of the key parameters to be monitored in the online monitoring system for trains.Based on the thermal network method,this paper establishes a thermal network model for the axle box bearing,considering the radial thermal deformation of the double-row tapered roller bearing components caused by the oil film characteristics and the temperature variations of the lubricating grease.A thermo-mechanical coupling model for the grease-lubricated double-row tapered roller axle box bearing of high-speed trains with track irregularity excitation is established.The correctness of the model is verified using the test bench data,and the temperature of the bearing at different rotational speeds,loads,fault sizes,and ambient temperatures are investigated.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
基金Supported by National Key R&D Program of China(Grant No.2021YFB3400501).
文摘Cam-lobe radial-piston hydraulic motors are widely used as rotation driving units for various marine machinery owing to their ultrahigh output torque(more than 100 kN m).A multi-row cam roller bearing(MCRB)is the key component that directly determines the fatigue life of a cam-lobe radial-piston hydraulic motor.However,compact geometry and complex loads render MCRB susceptible to fatigue failure,highlighting the need for an optimized MCRB to achieve longer fatigue life and higher reliability.Therefore,this study proposes an innovative geometry optimization method for an MCRB to improve its fatigue life.In this method,a quasi-static model was developed to calculate the load distribution,with the fatigue life of the MCRB calculated using both basic dynamic loading and load distribution.Subsequently,a genetic algorithm was used to obtain the optimized geometry parameters,which significantly improved the fatigue life of the MCRB.Finally,a loading test was conducted on a hydraulic motor installed with both the initial and optimized MCRB to validate the effectiveness of the proposed optimization method.This study provides a theoretical guideline for optimizing the design of MCRB,thereby increasing the fatigue life of hydraulic motors.
基金funded by the National Natural Science Foundation of China(No.51779171)。
文摘The horizontal bearing capacity of the screw pile and monopile was analyzed by model tests.Results showed that the horizontal bearing capacity of the screw pile was significantly greater than that of the monopile under the same loading conditions.With the increase in horizontal loading speed,the ultimate horizontal bearing capacity of the two piles also increases,and the difference decreases gradually.Moreover,the influence of vertical loading on the horizontal bearing capacity of screw pile and monopile is studied at the horizontal loading speed of 2 mm s-1.The findings indicate that vertical load evidently affects the horizontal bearing capacity of common piles,but slightly influences the horizontal bearing capacity of screw piles.
基金Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351)National Natural Science Foundation of China(Grant No.61833002).
文摘Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.
文摘Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models.
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.51825904)the Research on the Form,Design Method and Weathering Resistance of Key Components of Novel Floating Support Structures for Offshore Photovoltaics(Grant No.2022YFB4200701).
文摘Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.
基金supported in part by the National Natural Science Foundation of China(General Program)under Grants 62073193 and 61873333in part by the National Key Research and Development Project(General Program)under Grant 2020YFE0204900in part by the Key Research and Development Plan of Shandong Province(General Program)under Grant 2021CXGC010204.
文摘Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.