In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized...This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.展开更多
The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg&...The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.展开更多
The dynamic contact behavior of worn bearings with elastoplastic functionally graded coating is studied,and the interacting effect between worn band and functionally graded surface is analyzed.The surface deformation ...The dynamic contact behavior of worn bearings with elastoplastic functionally graded coating is studied,and the interacting effect between worn band and functionally graded surface is analyzed.The surface deformation and roughness are included in the film thickness.The mixed elastohydrodynamic lubrication combined with point contact model is introduced to analyze the oil pressure in the contact zone.By using the Fourier transform method and Papkovich-Neuber potential function,the displacements and stress fields in the elastoplastic functionally graded coating are obtained.The second-order central difference method is used to solve the Reynolds equation.It is found that the repeated surface interaction can result in the sharp increase in pressure in bearings,and the oil pressure increases with increasing graded index.The entrainment of oil in the inlet and outlet zones becomes more evident if a large graded index is selected.展开更多
In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated...In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.展开更多
Durability and reliability have been studied for decades through intensive trial-error experimentation.However,there are numerous fields of application where the costs associated with this approach are not acceptable....Durability and reliability have been studied for decades through intensive trial-error experimentation.However,there are numerous fields of application where the costs associated with this approach are not acceptable.In lubricated machines with severe dynamic loads,such as high-power-density engines,simulation tools offer clear advantages over intensive testing.Prototypes and multiple scenarios can be cost-effectively simulated to assess different lubricants and engine configurations.The work presented here details the study of wear based on a validated elastohydrodynamic(EHD)simulation model of the connecting rod journal bearing.This model accounts for elastic deformation through a connecting rod finite element model(FEM).In addition,multiple lubricant rheological and tribological dependences,determined by specific experimental tests,are applied in the model through their interaction with the simulation software.Correspondingly,a novel wear algorithm is proposed to predict wear depth over time evolution along a proposed wear cycle based on the typical working ranges of high-performance engines.A final assessment is presented to compare 4 different ultralow-viscosity lubricants in their protective performance under severe conditions.The results show the evolution of the wear load and wear depth over the wear cycle.This evaluation is key to describing a lubricant selection procedure for high-power-density engines.展开更多
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金financial support from the Indian National Science Academy,New Delhi,IndiaBiluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support。
文摘This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.
文摘The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.
基金This work is supported by the National Natural Science Foundations of China(No.11790282)National Natural Science Foundations of Hebei,China(A2019210037).
文摘The dynamic contact behavior of worn bearings with elastoplastic functionally graded coating is studied,and the interacting effect between worn band and functionally graded surface is analyzed.The surface deformation and roughness are included in the film thickness.The mixed elastohydrodynamic lubrication combined with point contact model is introduced to analyze the oil pressure in the contact zone.By using the Fourier transform method and Papkovich-Neuber potential function,the displacements and stress fields in the elastoplastic functionally graded coating are obtained.The second-order central difference method is used to solve the Reynolds equation.It is found that the repeated surface interaction can result in the sharp increase in pressure in bearings,and the oil pressure increases with increasing graded index.The entrainment of oil in the inlet and outlet zones becomes more evident if a large graded index is selected.
基金This paper is supported by National Natural Science Fundation of China under Grant No.50405030.
文摘In order to confirm the early failure cause of a four-row cylindrical roller bearing at the backup roll position of a six-high cold sheet mill, its lubrication behavior under harsh operating conditions is investigated. Through establishing and solving the Elastohydrodynamic Lubrication (EHL) model of the roller-inner raceway contact region, the minimum oil film thickness and the real lubrication performance are achieved. The results show the bearing failures come from the poor oil film thickness in the case of high temperature and low rotational speed, which leads to contact wear. So various approaches to improve bearing life via improving lubrication are compared. It has been proved decreasing surface roughness of both contact bodies is an effective way.
文摘Durability and reliability have been studied for decades through intensive trial-error experimentation.However,there are numerous fields of application where the costs associated with this approach are not acceptable.In lubricated machines with severe dynamic loads,such as high-power-density engines,simulation tools offer clear advantages over intensive testing.Prototypes and multiple scenarios can be cost-effectively simulated to assess different lubricants and engine configurations.The work presented here details the study of wear based on a validated elastohydrodynamic(EHD)simulation model of the connecting rod journal bearing.This model accounts for elastic deformation through a connecting rod finite element model(FEM).In addition,multiple lubricant rheological and tribological dependences,determined by specific experimental tests,are applied in the model through their interaction with the simulation software.Correspondingly,a novel wear algorithm is proposed to predict wear depth over time evolution along a proposed wear cycle based on the typical working ranges of high-performance engines.A final assessment is presented to compare 4 different ultralow-viscosity lubricants in their protective performance under severe conditions.The results show the evolution of the wear load and wear depth over the wear cycle.This evaluation is key to describing a lubricant selection procedure for high-power-density engines.