Hydrostatic assistance is a commonly used method to improve limited load carrying ability of tilting-pad thrust bearings during transient states of operation of vertical shaft hydro-generators.Despite of special hydra...Hydrostatic assistance is a commonly used method to improve limited load carrying ability of tilting-pad thrust bearings during transient states of operation of vertical shaft hydro-generators.Despite of special hydraulic equipment(as pumps,valves,etc.),it also requires manufacturing of special recesses/pockets at pad sliding surfaces,into which oil is injected under high pressure.It allows to lift the rotor before start-up of the machine and form a hydrostatic film between pads and collar.There is a quite wide variety of geometry of recesses(shape,depth,and size)met in practical large bearing applications.The presence of a hydrostatic pocket(usually located in the sliding surface above the pivot area,where thin film,high oil pressure and temperature are observed)affects bearing performance under hydrodynamic operation.In theoretical researches,there is an almost common practice not to include hydrostatic recess in thermohydrodynamic(THD)or thermoelastohydrodynamic(TEHD)analysis.This is probably due to the problems with obtaining solution for oil film geometry with pocket,the order of magnitude of the pocket depths being larger than gap thickness.In this paper,an attempt was taken to study the effect of lifting pocket on THD performance of a large tilting-pad thrust bearing of Itaipu power plant.Bearing performance was evaluated including recess shape for several cases of its depth.The results show that hydrostatic recess changes calculated bearing properties quite significantly,especially in vicinity of the pocket.展开更多
The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the...The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.展开更多
The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation f...The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.展开更多
A carrying capacity-temperature rise analysis model has been established for analysis of the carrying capacity, temperature rise and carrying capacity-temperature rise characteristic of a thrust magnetic bearing with ...A carrying capacity-temperature rise analysis model has been established for analysis of the carrying capacity, temperature rise and carrying capacity-temperature rise characteristic of a thrust magnetic bearing with solid magnet. The results indicate that there must be an optimal operating point for the thrust magnetic bearing with solid magnet. The main factors having effect on carrying capacity-temperature rise include static gap and/or ampere-turns. With proper static gap chosen, the bearing can be run near the optimal operating point by adjhusting ampere-turns, thereby optimizing the bearing properties.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and t...Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x=84 and Y=1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.展开更多
An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of t...An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.展开更多
The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been in...The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.展开更多
In order to solve the deformation of the hydrostatic thrust bearing with multi-pad annular recess in the heavy computer numerical control ( CNC ) equipment, the simulation concerning pressure feld of hydrostatic thr...In order to solve the deformation of the hydrostatic thrust bearing with multi-pad annular recess in the heavy computer numerical control ( CNC ) equipment, the simulation concerning pressure feld of hydrostatic thrust bearing with multi-pad annular recesses was carded out. The finite volume method of computational fluid dynamics ( CFD ) was used to compute the three-dlmensional pressure field of gap fluid between the rotary worktable and the base. The influence of the rotational speed on the bearing pressure performance was studied based on CFD and lubrication theory, and the method revealed the pressure distribution law. The results qualitatively agree well with the experimental data. The results indicate that the oil cavity pressure decreases gradually with rotational speed enhancing. The reliability of a hydrostatic thrust bearing with malti-pad annular recess can be predicted through this method, and the optimal design of such products can be achieved, and the numerical simulation method can provide reasonable data for design, lubrication, experiment, and deformation computation of hydrostatic thrust bearing in the heavy CNC equipment.展开更多
In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibr...In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.展开更多
The numerical determination of static characteristics of bearings allows a cost-efficient and fast pre-design.In this study,two flow models for aerostatic thrust bearings with pressurized porous material are presented...The numerical determination of static characteristics of bearings allows a cost-efficient and fast pre-design.In this study,two flow models for aerostatic thrust bearings with pressurized porous material are presented and analyzed.The models are based on the coupling of the Reynolds equation for lubricants(REL)and the determination of pressure drop through porous material by Darcy’s law.The simplified model is based on the assumption of a one-dimensional axial flow through porous media.The extended model considers the three-dimensional flow in the porous body.The analysis includes pressurized air from 4 to 9 bar(a)with nominal clearance of 5 to 60μm,Commercial CFD(computational fluid dynamics)software was used to verify the results.The extended model allows a more accurate prediction about the performance in the critical gap range.In total,the results show good agreement with CFD within a short computation time.展开更多
This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are...This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are proposed.It has been found that the two new types of bearings can increase the stiffness remarkably in a certain range of fluctuating load and have won wide applications in ultra-precision machines.展开更多
The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloida...The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust beating. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.展开更多
In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservation...In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.展开更多
Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bear...Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.展开更多
Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor...Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor. The static tilt of the runner disk has remarkable influence on the mechanical characteristics of thrust magnetic bearing, it can change the static load distribution between two radial magnetic bearings and will exert violent coupling effect among a thrust magnetic bearing and two radial magnetic bearings. Such a finding can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.展开更多
In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, tempera...In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.展开更多
An application of the boundary element method (BEM) is presented to calculate the behaviors of a spiral grooved thrust bearing (SGTB). The basic reason is that the SGTB has very complex boundary conditions that can hi...An application of the boundary element method (BEM) is presented to calculate the behaviors of a spiral grooved thrust bearing (SGTB). The basic reason is that the SGTB has very complex boundary conditions that can hinder the effective or sufficient applications of the finite difference method (FDM) and the finite element method (FEM), despite some existing work based on the FDM and the FEM. In other to apply the BEM, the pressure control equation, i. e., Reynolds' equation, is first transformed into Laplace's and Poisson's form of the equations. Discretization of the SGTB with a set of boundary elements is thus explained in detail, which also includes the handling of boundary conditions. The Archimedean SGTB is chosen as an example of the application Of BEM, and the relationship between the behaviors and structure parameters of the bearing are found and discussed through this calculation. The obtained results lay a solid foundation for a further work of the design of the SGTB.展开更多
Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the la...Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the largest hydrodynamic thrust bearings ever built (external diameter 5,200 mm, axial load equals approximately 3,600 t). This paper is an attempt to propose a new thrust bearing design with the use of the state-of-the-art technologies and simulation techniques that demonstrate a reduction of friction power losses generated by the thrust bearing. This paper is divided into two parts. Within the first one, the original thrust bearing design which was implemented in the generators is described. Related calculation results based on a TEHD (thermo-elasto-hydrodynamic) calculation software used by Alstom will be presented. A comparison between measurement results gathered in the 1980s is given. In the second part, a potential solution of a more beneficial bearing design is described. The proposed thrust bearing design modification is an implementation of Alstom's PolypadTM coating. This modern polymer (PEEK) coating material has already been used by Alstom in projects around the world for many years. This coating allows pushing the operating parameters limits toward higher temperatures and lower oil film thicknesses far beyond the limits known for the conventional bearing materials.展开更多
文摘Hydrostatic assistance is a commonly used method to improve limited load carrying ability of tilting-pad thrust bearings during transient states of operation of vertical shaft hydro-generators.Despite of special hydraulic equipment(as pumps,valves,etc.),it also requires manufacturing of special recesses/pockets at pad sliding surfaces,into which oil is injected under high pressure.It allows to lift the rotor before start-up of the machine and form a hydrostatic film between pads and collar.There is a quite wide variety of geometry of recesses(shape,depth,and size)met in practical large bearing applications.The presence of a hydrostatic pocket(usually located in the sliding surface above the pivot area,where thin film,high oil pressure and temperature are observed)affects bearing performance under hydrodynamic operation.In theoretical researches,there is an almost common practice not to include hydrostatic recess in thermohydrodynamic(THD)or thermoelastohydrodynamic(TEHD)analysis.This is probably due to the problems with obtaining solution for oil film geometry with pocket,the order of magnitude of the pocket depths being larger than gap thickness.In this paper,an attempt was taken to study the effect of lifting pocket on THD performance of a large tilting-pad thrust bearing of Itaipu power plant.Bearing performance was evaluated including recess shape for several cases of its depth.The results show that hydrostatic recess changes calculated bearing properties quite significantly,especially in vicinity of the pocket.
基金Supported by National Natural Science Foundation of China(Grant No.51439002)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120002110011,20130002110072)Special Funds for Marine Renewable Energy Projects(Grant no.GHME2012GC02)
文摘The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.
基金supported by National Natural Science Foundation of China (Grant No. 50635060)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA050501)+1 种基金National Key Basic Research Program of China (973 Program,Grant No. 2007CB707705,Grant No. 2007CB707706)Research Funds for the Central Universities of China
文摘The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.
文摘A carrying capacity-temperature rise analysis model has been established for analysis of the carrying capacity, temperature rise and carrying capacity-temperature rise characteristic of a thrust magnetic bearing with solid magnet. The results indicate that there must be an optimal operating point for the thrust magnetic bearing with solid magnet. The main factors having effect on carrying capacity-temperature rise include static gap and/or ampere-turns. With proper static gap chosen, the bearing can be run near the optimal operating point by adjhusting ampere-turns, thereby optimizing the bearing properties.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x=84 and Y=1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.
文摘An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51635004, 11472078)。
文摘The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.
基金National Natural Science Foundations of China(No.51075106,No.51005063,No.50975066)Technology Items of Heilongjiang Provincial Education Department,China(No.12511087,No.12521096,No.12511086,No.12511088,No.11551080,No.12521119)+1 种基金Projects of the Special Fund on the Science and Technology Innovation People of Harbin,China(No.2012RFQXG077)the 2012 National College of Innovative Pilot Project,China(No.201210214027)
文摘In order to solve the deformation of the hydrostatic thrust bearing with multi-pad annular recess in the heavy computer numerical control ( CNC ) equipment, the simulation concerning pressure feld of hydrostatic thrust bearing with multi-pad annular recesses was carded out. The finite volume method of computational fluid dynamics ( CFD ) was used to compute the three-dlmensional pressure field of gap fluid between the rotary worktable and the base. The influence of the rotational speed on the bearing pressure performance was studied based on CFD and lubrication theory, and the method revealed the pressure distribution law. The results qualitatively agree well with the experimental data. The results indicate that the oil cavity pressure decreases gradually with rotational speed enhancing. The reliability of a hydrostatic thrust bearing with malti-pad annular recess can be predicted through this method, and the optimal design of such products can be achieved, and the numerical simulation method can provide reasonable data for design, lubrication, experiment, and deformation computation of hydrostatic thrust bearing in the heavy CNC equipment.
基金Project(2012CB026000)supported by the National Basic Research Program of China(973 Program)
文摘In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.
文摘The numerical determination of static characteristics of bearings allows a cost-efficient and fast pre-design.In this study,two flow models for aerostatic thrust bearings with pressurized porous material are presented and analyzed.The models are based on the coupling of the Reynolds equation for lubricants(REL)and the determination of pressure drop through porous material by Darcy’s law.The simplified model is based on the assumption of a one-dimensional axial flow through porous media.The extended model considers the three-dimensional flow in the porous body.The analysis includes pressurized air from 4 to 9 bar(a)with nominal clearance of 5 to 60μm,Commercial CFD(computational fluid dynamics)software was used to verify the results.The extended model allows a more accurate prediction about the performance in the critical gap range.In total,the results show good agreement with CFD within a short computation time.
文摘This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are proposed.It has been found that the two new types of bearings can increase the stiffness remarkably in a certain range of fluctuating load and have won wide applications in ultra-precision machines.
基金supported by National Natural Science Foundation of China(Nos.51406157,51506209)partially supported by the China Postdoctoral Science Foundation(No.2014M552438)
文摘The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust beating. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.
基金Supported by the Ministerial Level Foundation(2220060029)
文摘In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.
基金This work was supported by the National Natural Science Foundation of China(No.50275116and50475088)the National High-Tech Research and Development Programof China(No.2002AA503020).
文摘Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.
文摘Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor. The static tilt of the runner disk has remarkable influence on the mechanical characteristics of thrust magnetic bearing, it can change the static load distribution between two radial magnetic bearings and will exert violent coupling effect among a thrust magnetic bearing and two radial magnetic bearings. Such a finding can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.
文摘In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.
基金This project is supported by National Natural Science Foundation of China.
文摘An application of the boundary element method (BEM) is presented to calculate the behaviors of a spiral grooved thrust bearing (SGTB). The basic reason is that the SGTB has very complex boundary conditions that can hinder the effective or sufficient applications of the finite difference method (FDM) and the finite element method (FEM), despite some existing work based on the FDM and the FEM. In other to apply the BEM, the pressure control equation, i. e., Reynolds' equation, is first transformed into Laplace's and Poisson's form of the equations. Discretization of the SGTB with a set of boundary elements is thus explained in detail, which also includes the handling of boundary conditions. The Archimedean SGTB is chosen as an example of the application Of BEM, and the relationship between the behaviors and structure parameters of the bearing are found and discussed through this calculation. The obtained results lay a solid foundation for a further work of the design of the SGTB.
文摘Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the largest hydrodynamic thrust bearings ever built (external diameter 5,200 mm, axial load equals approximately 3,600 t). This paper is an attempt to propose a new thrust bearing design with the use of the state-of-the-art technologies and simulation techniques that demonstrate a reduction of friction power losses generated by the thrust bearing. This paper is divided into two parts. Within the first one, the original thrust bearing design which was implemented in the generators is described. Related calculation results based on a TEHD (thermo-elasto-hydrodynamic) calculation software used by Alstom will be presented. A comparison between measurement results gathered in the 1980s is given. In the second part, a potential solution of a more beneficial bearing design is described. The proposed thrust bearing design modification is an implementation of Alstom's PolypadTM coating. This modern polymer (PEEK) coating material has already been used by Alstom in projects around the world for many years. This coating allows pushing the operating parameters limits toward higher temperatures and lower oil film thicknesses far beyond the limits known for the conventional bearing materials.