Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this ...Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.展开更多
多辐射源跟踪任务受辐射源天线扫描方式、工作参数变化等因素影响,在目标种类、数量等方面存在一定的时变特征。对该特征的适应能力是评估电子支援措施(electronic support measures,ESM)辐射源跟踪能力的一项重要指标。据此,首先建立...多辐射源跟踪任务受辐射源天线扫描方式、工作参数变化等因素影响,在目标种类、数量等方面存在一定的时变特征。对该特征的适应能力是评估电子支援措施(electronic support measures,ESM)辐射源跟踪能力的一项重要指标。据此,首先建立了一种迭代式时频扫描方案优化模型。然后,以评估ESM对多辐射源跟踪任务时变特性的适应能力为目标,提出了一种基于可行域的性能评估方法。仿真实验结果表明,在不同类型目标数量动态变化过程中,所提方法给出的评估结果都能与扫描方案实际性能保持一致,具备准确的动态评估能力。展开更多
Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster ...Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.展开更多
The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in...The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.展开更多
文摘Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.
文摘多辐射源跟踪任务受辐射源天线扫描方式、工作参数变化等因素影响,在目标种类、数量等方面存在一定的时变特征。对该特征的适应能力是评估电子支援措施(electronic support measures,ESM)辐射源跟踪能力的一项重要指标。据此,首先建立了一种迭代式时频扫描方案优化模型。然后,以评估ESM对多辐射源跟踪任务时变特性的适应能力为目标,提出了一种基于可行域的性能评估方法。仿真实验结果表明,在不同类型目标数量动态变化过程中,所提方法给出的评估结果都能与扫描方案实际性能保持一致,具备准确的动态评估能力。
基金supported by the National Natural Science Foundation of China(61401389)the Joint Fund of the Ministry of Education of China(6141A02033310)
文摘Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.
基金National Natural Science Foundation of China(No.59575095,No.59675089,No.50075091,No.50575235)
文摘The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.