In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting ...In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting early movements of soil slopes by the direct embedding of suitable fiber cables in the ground is presented. Furthermore, the same technology can be used to realize innovative inclinometers, as well as smart foundation anchors.展开更多
The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the ...The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions.展开更多
Addressed is the calculation of millimeter wave attenuation on coplanar waveguide(CPW). A novel conformal wavelet finite-difference time-domain(CWFDTD) algorithm is proposed with emphasis on its application in calcula...Addressed is the calculation of millimeter wave attenuation on coplanar waveguide(CPW). A novel conformal wavelet finite-difference time-domain(CWFDTD) algorithm is proposed with emphasis on its application in calculation of millimeter wave attenuation on CPW, which is the combination of conformal algorithm dealing with the deformed cell with Wavelet-FDTD using multi-resolution analysis(MRA). Derived is the difference formulation for multi-resolution time domain(MRTD) based on Daubechies wavelets, and also given is the stability conditions for wavelet-FDTD algorithm. To validate its accuracy and efficiency, this novel method is applied to calculate the millimeter wave attenuation on lithium niobate CPW. Numerical results demonstrate that this new CWFDTD algorithm has the same accuracy with the conformal finite-difference time-domain(CFDTD) and conformal finite-difference time-domain based on alternating-direction implicit method(ADI-CFDTD), but saves computational time and computer memory.展开更多
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved ...The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some inn...Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a relatively new concept of TLP which is christened as Tension-Based Tension Leg Platform(TBTLP) and patented by Srinivasan(1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been performed using hydrodynamic tool ANSYS? AQWA?. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs(without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.展开更多
This paper deals with the nonlinear effect of the drift motion of multi-chain mooring buoys. The buoy's motion in time domain is determined for the case that the wave and mooring force are nonlinear. The Kotorayam...This paper deals with the nonlinear effect of the drift motion of multi-chain mooring buoys. The buoy's motion in time domain is determined for the case that the wave and mooring force are nonlinear. The Kotorayama's method of hydrodynamic effect in a single mooring chain is expanded to multi-mooring chains. The time history of drift motion of the mooring buoy in regular waves and wave groups is calculated. The relation between the drift motion and the wave height or difference frequency is discussed. It can be shown that the effect of the hydrodynamic force acting on the mooring chain has remarkable influence on the total drift motion of the mooring buoy. In a wave group, its amplitude is mainly controled by the wave height and has little relation with difference frequency.展开更多
全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CM...全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。展开更多
The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for n...The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for non-stationary strong wind fields is first presented. Non-stationary wind forces induced by strong winds on bridge deck and tower are then given a brief introduction. Finally,Non-stationary buffeting response of Pulite Bridge in China,a long span suspension bridge,is computed by using ANSYS software under four working conditions with different combination of time-varying mean wind and time-varying variance. The case study further confirms that it is necessity of considering non-stationary buffeting response for long span suspension bridge under strong wind loading,rather than only stationary buffeting response.展开更多
Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric mode...Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric models of the hemodynamic response function (HRF) where either pre-whitening of the data is attempted or autoregressive (AR) models are employed to model the noise. Statistical analysis then proceeds via regression of the convolution of the HRF with the input stimuli. This approach has limitations when considering that the time series collected are embedded in a brain image in which the AR model order may vary and pre-whitening techniques may be insufficient for handling faster sampling times. However fMRI data can be analyzed in the Fourier domain where the assumptions made as to the structure of the noise can be less restrictive and hypothesis tests are straightforward for single subject analysis, especially useful in a clinical setting. This allows for experiments that can have both fast temporal sampling and event-related designs where stimuli can be closely spaced in time. Equally important, statistical analysis in the Fourier domain focuses on hypothesis tests based on nonparametric estimates of the hemodynamic transfer function (HRF in the frequency domain). This is especially important for experimental designs involving multiple states (drug or stimulus induced) that may alter the form of the response function. In this context a univariate general linear model in the Fourier domain has been applied to analyze BOLD data sampled at a rate of 400 ms from an experiment that used a two-way ANOVA design for the deterministic stimulus inputs with inter-stimulus time intervals chosen from Poisson distributions of equal intensity.展开更多
It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite diff...It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical ...The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical add-drop multiplexer(ROADM)/optical cross connect(OXC)is not ideal,causing the narrowing of spectrum.Spectral narrowing will lead to signal impairment.Therefore,guard-bands need to be inserted between adjacent paths which will cause the waste of resources.In this paper,we propose a service-based intelligent aggregation node selection and area division(ANS-AD)algorithm.For the rationality of the aggregation node selection,the ANS-AD algorithm chooses the aggregation nodes according to historical traffic information based on big data analysis.Then the ANS-AD algorithm divides the topology into areas according to the result of the aggregation node selection.Based on the ANS-AD algorithm,we propose a time-domain and spectral-domain flow aggregation(TS-FA)algorithm.For the purpose of reducing resources'waste,the TS-FA algorithm attempts to reduce the insertion of guard-bands by time-domain and spectral-domain flow aggregation.Moreover,we design a time-domain and spectral-domain flow aggregation module on software defined optical network(SDON)architecture.Finally,a simulation is designed to evaluate the performance of the proposed algorithms and the results show that our proposed algorithms can effectively reduce the resource waste.展开更多
In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order f...In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).展开更多
A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is ...A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is developed directly in time domain and the hydrodynamic problem is formulated based on linear, inviscid and slightly compressible fluid theory and the structural response is analyzed on the thin plate assumption. The time domain finite element procedure herein is validated by comparing numerical results with available experimental data. Finally, the transient elastic response of a pontoon-type VLFS under the landing of an airplane is computed by the proposed time domain FEM. The time histories of the applied force and the position and velocity of an airplane during landing are modeled with data from a Boeing 747-400 jumbo jet.展开更多
In the time domain method the dynamic load is successfully identified when the accelerations, velocities and displacements or velocities and displacements of the structure are known. But in engineering practice or exp...In the time domain method the dynamic load is successfully identified when the accelerations, velocities and displacements or velocities and displacements of the structure are known. But in engineering practice or experiments usually only the acceleration response is recorded. In this paper an improved time domain method is proposed for dynamic load identification. In this method by using of Duhamel integral, only the acceleration response is required for load identification. As an application of the present method, the dynamic ice load on a Bohai offshore platform is identified based on some measured acceleration. The identified values of ice load are in good agreement with the measured ones.展开更多
文摘In this paper, we show some recent experimental applications of Brillouin optical time-domain analysis (BOTDA) based sensors for geotechnical monitoring. In particular, how these sensors can be applied to detecting early movements of soil slopes by the direct embedding of suitable fiber cables in the ground is presented. Furthermore, the same technology can be used to realize innovative inclinometers, as well as smart foundation anchors.
基金financially supported by the Program of Science and Technology Innovation Action Plan,Shanghai,China(Grant No.20200741600).
文摘The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions.
基金Natural Science Foundation of Hubei Province(2005ABA311)
文摘Addressed is the calculation of millimeter wave attenuation on coplanar waveguide(CPW). A novel conformal wavelet finite-difference time-domain(CWFDTD) algorithm is proposed with emphasis on its application in calculation of millimeter wave attenuation on CPW, which is the combination of conformal algorithm dealing with the deformed cell with Wavelet-FDTD using multi-resolution analysis(MRA). Derived is the difference formulation for multi-resolution time domain(MRTD) based on Daubechies wavelets, and also given is the stability conditions for wavelet-FDTD algorithm. To validate its accuracy and efficiency, this novel method is applied to calculate the millimeter wave attenuation on lithium niobate CPW. Numerical results demonstrate that this new CWFDTD algorithm has the same accuracy with the conformal finite-difference time-domain(CFDTD) and conformal finite-difference time-domain based on alternating-direction implicit method(ADI-CFDTD), but saves computational time and computer memory.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant Nos.2006AA09A103 and 2006AA09A104)
文摘The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
文摘Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a relatively new concept of TLP which is christened as Tension-Based Tension Leg Platform(TBTLP) and patented by Srinivasan(1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been performed using hydrodynamic tool ANSYS? AQWA?. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs(without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.
文摘This paper deals with the nonlinear effect of the drift motion of multi-chain mooring buoys. The buoy's motion in time domain is determined for the case that the wave and mooring force are nonlinear. The Kotorayama's method of hydrodynamic effect in a single mooring chain is expanded to multi-mooring chains. The time history of drift motion of the mooring buoy in regular waves and wave groups is calculated. The relation between the drift motion and the wave height or difference frequency is discussed. It can be shown that the effect of the hydrodynamic force acting on the mooring chain has remarkable influence on the total drift motion of the mooring buoy. In a wave group, its amplitude is mainly controled by the wave height and has little relation with difference frequency.
文摘全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408174)Anhui Provincial Natural Science Foundation(Grant No.1408085QE95)+1 种基金China Postdoctoral Science Foundation(Grant No.2013M540511 and 2015T80652)Key University Science Research Project of Anhui Province(Grant No.KJ2016A294)
文摘The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for non-stationary strong wind fields is first presented. Non-stationary wind forces induced by strong winds on bridge deck and tower are then given a brief introduction. Finally,Non-stationary buffeting response of Pulite Bridge in China,a long span suspension bridge,is computed by using ANSYS software under four working conditions with different combination of time-varying mean wind and time-varying variance. The case study further confirms that it is necessity of considering non-stationary buffeting response for long span suspension bridge under strong wind loading,rather than only stationary buffeting response.
文摘Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric models of the hemodynamic response function (HRF) where either pre-whitening of the data is attempted or autoregressive (AR) models are employed to model the noise. Statistical analysis then proceeds via regression of the convolution of the HRF with the input stimuli. This approach has limitations when considering that the time series collected are embedded in a brain image in which the AR model order may vary and pre-whitening techniques may be insufficient for handling faster sampling times. However fMRI data can be analyzed in the Fourier domain where the assumptions made as to the structure of the noise can be less restrictive and hypothesis tests are straightforward for single subject analysis, especially useful in a clinical setting. This allows for experiments that can have both fast temporal sampling and event-related designs where stimuli can be closely spaced in time. Equally important, statistical analysis in the Fourier domain focuses on hypothesis tests based on nonparametric estimates of the hemodynamic transfer function (HRF in the frequency domain). This is especially important for experimental designs involving multiple states (drug or stimulus induced) that may alter the form of the response function. In this context a univariate general linear model in the Fourier domain has been applied to analyze BOLD data sampled at a rate of 400 ms from an experiment that used a two-way ANOVA design for the deterministic stimulus inputs with inter-stimulus time intervals chosen from Poisson distributions of equal intensity.
基金supported by National Basic Research Program of China(973 Program)
文摘It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.
基金funded by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2017110031005226
文摘The rapid growth of IP traffic has contributed to wide deployment of optical devices in elastic optical network.However,the passband shape of wavelength selective switches(WSSs)that are used in reconfigurable optical add-drop multiplexer(ROADM)/optical cross connect(OXC)is not ideal,causing the narrowing of spectrum.Spectral narrowing will lead to signal impairment.Therefore,guard-bands need to be inserted between adjacent paths which will cause the waste of resources.In this paper,we propose a service-based intelligent aggregation node selection and area division(ANS-AD)algorithm.For the rationality of the aggregation node selection,the ANS-AD algorithm chooses the aggregation nodes according to historical traffic information based on big data analysis.Then the ANS-AD algorithm divides the topology into areas according to the result of the aggregation node selection.Based on the ANS-AD algorithm,we propose a time-domain and spectral-domain flow aggregation(TS-FA)algorithm.For the purpose of reducing resources'waste,the TS-FA algorithm attempts to reduce the insertion of guard-bands by time-domain and spectral-domain flow aggregation.Moreover,we design a time-domain and spectral-domain flow aggregation module on software defined optical network(SDON)architecture.Finally,a simulation is designed to evaluate the performance of the proposed algorithms and the results show that our proposed algorithms can effectively reduce the resource waste.
文摘In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).
基金supported by the National Natural Science Foundation of China(61571088)the State High-Tech Development Plan(the 863 Program)(2015AA7031093B2015AA8098088B)
文摘A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is developed directly in time domain and the hydrodynamic problem is formulated based on linear, inviscid and slightly compressible fluid theory and the structural response is analyzed on the thin plate assumption. The time domain finite element procedure herein is validated by comparing numerical results with available experimental data. Finally, the transient elastic response of a pontoon-type VLFS under the landing of an airplane is computed by the proposed time domain FEM. The time histories of the applied force and the position and velocity of an airplane during landing are modeled with data from a Boeing 747-400 jumbo jet.
文摘In the time domain method the dynamic load is successfully identified when the accelerations, velocities and displacements or velocities and displacements of the structure are known. But in engineering practice or experiments usually only the acceleration response is recorded. In this paper an improved time domain method is proposed for dynamic load identification. In this method by using of Duhamel integral, only the acceleration response is required for load identification. As an application of the present method, the dynamic ice load on a Bohai offshore platform is identified based on some measured acceleration. The identified values of ice load are in good agreement with the measured ones.