Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and p...Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and provide multiple functional-ities.They have great application potential in military and civilian fields,such as precision guidance and mobile communication,and are currently a hot spot of academic research.This article provides a review on the fundamentals and applications of TMAs.First,the basic theory and mathematical formulations of TMAs are introduced.Second,the most important applications of TMAs,namely time-modulated phased arrays(TMPA),are discussed from the perspectives of harmonic suppression and harmonic utiliza-tion,which are used for single-beam and multibeam radiation.Then,we survey the combination of TMA with various types of novel antenna arrays,such as single-channel digital beamforming(DBF)arrays,frequency diverse arrays(FDAs),and retrodirective arrays,to create new hardware implementation methods and enhance their performance.Next,recent advances in dedicated integrated chips for TMA,which have played a significant role in driving the progress of TMAs from academic research to practical applications,are presented.Finally,the challenges and prospects for TMAs are discussed,including new research directions and emerging applica-tion scenarios.展开更多
We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb(over 100 nm wide) features a record low free spectra...We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb(over 100 nm wide) features a record low free spectral range(FSR) of 49 GHz, resulting in an unprecedented record high channel number(81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.展开更多
A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduce...In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduced in this paper.The under ice underwater acoustic channel is characterized by heavy multipath transmission.Under this model,a parametric array emission method of Pattern signal is derived and the system performance is analyzed.A broadband low frequency sound waves with narrow beam-pattern,which will reduce the interface reflections and suppress the effects of multipath transmission,can be obtained by the emission method.The Songhua River under ice trial results show that there is an anti-multipath property and a higher data rate in the under-ice acoustic channel in proposed approach.展开更多
In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumab...In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.展开更多
This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are al...This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are alsostudied, and a more precise model of delay time dmerence is proposed.展开更多
We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs ...We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.展开更多
Several pulsar timing array(PTA) collaborations have recently reported the evidence for a stochastic gravitational-wave background(SGWB), which can unveil the formation of primordial seeds of inhomogeneities in the ea...Several pulsar timing array(PTA) collaborations have recently reported the evidence for a stochastic gravitational-wave background(SGWB), which can unveil the formation of primordial seeds of inhomogeneities in the early universe. With the SGWB parameters inferred from PTAs data, we can make a prediction of the seeds for early galaxy formation from the domain walls in the axion-like particles(ALPs) field distribution. This also naturally provides a solution to the observation of high redshifts by the James Webb Space Telescope. The predicted photon coupling of the ALP is within the reach of future experimental searches.展开更多
The recent stochastic signal observed jointly by NANOGrav,parkes pulsar timing array,European pulsar timing array,and Chinese pulsar timing array can be accounted for by scalarinduced gravitational waves(SIGWs).The so...The recent stochastic signal observed jointly by NANOGrav,parkes pulsar timing array,European pulsar timing array,and Chinese pulsar timing array can be accounted for by scalarinduced gravitational waves(SIGWs).The source of the SIGWs is from the primordial curvature perturbations,and the main contribution to the SIGWs is from the peak of the primordial curvature power spectrum.To effectively model this peak,we apply the Taylor expansion to parameterize it.With the Taylor expansion parameterization,we apply Bayesian methods to constrain the primordial curvature power spectrum based on the NANOGrav 15 year data set.The constraint on the primordial curvature power spectrum possesses a degree of generality,as the Taylor expansion can effectively approximate a wide range of function profiles.展开更多
We search for isotropic stochastic gravitational-wave background(SGWB)in the International Pulsar Timing Array second data release.By modeling the SGWB as a power-law,we find very strong Bayesian evidence for a common...We search for isotropic stochastic gravitational-wave background(SGWB)in the International Pulsar Timing Array second data release.By modeling the SGWB as a power-law,we find very strong Bayesian evidence for a common-spectrum process,and further this process has scalar transverse(ST)correlations allowed in general metric theory of gravity as the Bayes factor in favor of the ST-correlated process versus the spatially uncorrelated common-spectrum process is 30±2.The median and the 90%equal-tail amplitudes of ST mode are A_(ST)=1.29^(+0.51)_(−0.44)×10^(−15),or equivalently the energy density parameter per logarithm frequency isΩSTGW=2.31^(+2.19)_(−1.30)×10^(−9),at frequency of 1 year−1.However,we do not find any statistically significant evidence for the tensor transverse(TT)mode and then place the 95%upper limits as A_(TT)<3.95×10^(−15),or equivalentlyΩ^(TT)_(GW)<2.16×10^(−9),at frequency of 1 year^(−1).展开更多
Several Pulsar Timing Array(PTA)Collaborations have recently provided strong evidence for a n Hz Stochastic Gravitational-Wave Background(SGWB).Here we investigate the implications of a firstorder phase transition occ...Several Pulsar Timing Array(PTA)Collaborations have recently provided strong evidence for a n Hz Stochastic Gravitational-Wave Background(SGWB).Here we investigate the implications of a firstorder phase transition occurring within the early Universe's dark quantum chromodynamics epoch,specifically within the framework of the mirror twin Higgs dark sector model.Our analysis indicates a distinguishable SGWB signal originating from this phase transition,which can explain the measurements obtained by PTAs.Remarkably,a significant portion of the parameter space for the SGWB signal also effectively resolves the existing tensions in both the H_(0) and S_(8) measurements in Cosmology.This intriguing correlation suggests a possible common origin of these three phenomena for 0.2<ΔN_(eff)<0.5,where the mirror dark matter component constitutes less than 30% of the total dark matter abundance.Nextgeneration CMB experiments such as CMB-S4 can test this parameter region.展开更多
We perform the first search for an isotropic non-tensorial gravitational-wave background(GWB) allowed in general metric theories of gravity in the North American Nanohertz Observatory for Gravitational Waves(NANOGrav)...We perform the first search for an isotropic non-tensorial gravitational-wave background(GWB) allowed in general metric theories of gravity in the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) 12.5-year data set. By modeling the GWB as a power-law spectrum, we find strong Bayesian indication for a spatially correlated process with scalar transverse(ST) correlations whose Bayes factor versus the spatially uncorrelated common-spectrum process is 107 ± 7, but no statistically significant evidence for the tensor transverse, vector longitudinal, and scalar longitudinal polarization modes. The median and the 90% equal-tail amplitudes of ST mode are ■ , or equivalently the energy density parameter per logarithm frequency is ■, at frequency of 1/year.展开更多
Several pulsar timing array(PTA)collaborations,including NANOGrav,EPTA,PPTA,and CPTA,have announced the evidence for a stochastic signal consistent with a stochastic gravitational wave background(SGWB).Supermassive bl...Several pulsar timing array(PTA)collaborations,including NANOGrav,EPTA,PPTA,and CPTA,have announced the evidence for a stochastic signal consistent with a stochastic gravitational wave background(SGWB).Supermassive black hole binaries(SMBHBs)are supposed to be the most promising gravitational-wave(GW)sources for this signal.In this paper,we use the NANOGrav 15-year data set to constrain the parameter space in an astro-informed formation model for SMBHBs.Our results prefer a large turn-over eccentricity of the SMBHB orbit when GWs begin to dominate the SMBHB evolution.Furthermore,the SGWB spectrum is extrapolated to the space-borne GW detector frequency band by including inspiral-merge-cutoff phases of SMBHBs,indicating that the SGWB from SMBHBs should be detected by LISA,Taiji and Tian Qin in the near future.展开更多
Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year da...Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year data, which might be the first detection of the stochastic background of gravitational waves(GWs). We show that the amplitude and the power index of such waves imply that they could be the secondary GWs induced by the peaked curvature perturbation with a dust-like post inflationary era with-0.091 ≤ w ≤ 0.048. Such stochastic background of GWs naturally predicts substantial existence of planet-mass primordial black holes(PBHs), which can be the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment(OGLE).展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62101258,62071235 and 62271260)the Jiangsu Province Science&Technology Department(Grant No.BE2021017).
文摘Time-modulated array(TMA)antennas,introduce the dimension of time into antenna design to control the radiation patterns and frequency spectral characteristics,thus improve the reconfigurability of array antennas and provide multiple functional-ities.They have great application potential in military and civilian fields,such as precision guidance and mobile communication,and are currently a hot spot of academic research.This article provides a review on the fundamentals and applications of TMAs.First,the basic theory and mathematical formulations of TMAs are introduced.Second,the most important applications of TMAs,namely time-modulated phased arrays(TMPA),are discussed from the perspectives of harmonic suppression and harmonic utiliza-tion,which are used for single-beam and multibeam radiation.Then,we survey the combination of TMA with various types of novel antenna arrays,such as single-channel digital beamforming(DBF)arrays,frequency diverse arrays(FDAs),and retrodirective arrays,to create new hardware implementation methods and enhance their performance.Next,recent advances in dedicated integrated chips for TMA,which have played a significant role in driving the progress of TMAs from academic research to practical applications,are presented.Finally,the challenges and prospects for TMAs are discussed,including new research directions and emerging applica-tion scenarios.
基金Australian Research Council(ARC)Discovery Projects Program(DP150104327)Strategic,Discovery and Acceleration Grants Schemes of Natural Sciences and Engineering Research Council of Canada(NSERC)+4 种基金MESI PSR-SIIRI Initiative in QuebecCanada Research Chairs ProgramITMO Fellowship and Professorship Program of the Government of the Russian Federation(074-U 01)1000 Talents Sichuan Program in ChinaStrategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB24030000)
文摘We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb(over 100 nm wide) features a record low free spectral range(FSR) of 49 GHz, resulting in an unprecedented record high channel number(81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.
基金Supported by Beijing Education Administration Foundation (00KG040)
文摘A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
基金supported by the National Natural Science Foundation of China(61471137,61631008)Fok Ying Tung Education Foundation(151007)the 13th Five-Year Plan Communication Information Control and Security Technology Key Laboratory Foundation(61421060301162106001)
文摘In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduced in this paper.The under ice underwater acoustic channel is characterized by heavy multipath transmission.Under this model,a parametric array emission method of Pattern signal is derived and the system performance is analyzed.A broadband low frequency sound waves with narrow beam-pattern,which will reduce the interface reflections and suppress the effects of multipath transmission,can be obtained by the emission method.The Songhua River under ice trial results show that there is an anti-multipath property and a higher data rate in the under-ice acoustic channel in proposed approach.
基金supported by the National Science Foundation(NSF)under PIRE grant0968296support by the National Natural Science Foundation of China(Grant Nos.11503007,91636111 and 11690021)+2 种基金partial support through the New York Space Grant Consortiumsupport by NASA through the Einstein Fellowship grant PF4-150120upport from the JPL RTD program
文摘In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.
文摘This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are alsostudied, and a more precise model of delay time dmerence is proposed.
文摘We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.
基金supported by the National Natural Science Foundation of China (Grant Nos.12275134,12147228,12335005,and 12275232)by Maxim Khlopov was carried out at Southern Federal University with financial support from the Ministry of Science and Higher Education of the Russian Federation (Grant No.GZ0110/2310-IF)+2 种基金supported by the National Natural Science Foundation of China (Grant Nos.12005180,and 12305113)the Natural Science Foundation of Shandong Province (Grant Nos.ZR2020QA083,and ZR2022QA026)the Project of Shandong Province Higher Educational Science and Technology Program (Grant No.2022KJ271)。
文摘Several pulsar timing array(PTA) collaborations have recently reported the evidence for a stochastic gravitational-wave background(SGWB), which can unveil the formation of primordial seeds of inhomogeneities in the early universe. With the SGWB parameters inferred from PTAs data, we can make a prediction of the seeds for early galaxy formation from the domain walls in the axion-like particles(ALPs) field distribution. This also naturally provides a solution to the observation of high redshifts by the James Webb Space Telescope. The predicted photon coupling of the ALP is within the reach of future experimental searches.
基金supported in part by the National Natural Science Foundation of China under Grant No.12305060the Talent-Introduction Program of Hubei Polytechnic University under Grant No.19xjk25R。
文摘The recent stochastic signal observed jointly by NANOGrav,parkes pulsar timing array,European pulsar timing array,and Chinese pulsar timing array can be accounted for by scalarinduced gravitational waves(SIGWs).The source of the SIGWs is from the primordial curvature perturbations,and the main contribution to the SIGWs is from the peak of the primordial curvature power spectrum.To effectively model this peak,we apply the Taylor expansion to parameterize it.With the Taylor expansion parameterization,we apply Bayesian methods to constrain the primordial curvature power spectrum based on the NANOGrav 15 year data set.The constraint on the primordial curvature power spectrum possesses a degree of generality,as the Taylor expansion can effectively approximate a wide range of function profiles.
基金This work is supported by the National Key Research and Development Program of China Grant No.2020YFC2201502, grants from NSFC (Grant No.11 975 019,11 991 052,12 047 503)Key Research Program of Frontier Sciences, CAS, Grant NO. ZDBS-LY-7009+1 种基金CAS Project for Young Scientists in Basic Research YSBR-006the Key Research Program of the Chinese Academy of Sciences (Grant NO. XDPB15)。
文摘We search for isotropic stochastic gravitational-wave background(SGWB)in the International Pulsar Timing Array second data release.By modeling the SGWB as a power-law,we find very strong Bayesian evidence for a common-spectrum process,and further this process has scalar transverse(ST)correlations allowed in general metric theory of gravity as the Bayes factor in favor of the ST-correlated process versus the spatially uncorrelated common-spectrum process is 30±2.The median and the 90%equal-tail amplitudes of ST mode are A_(ST)=1.29^(+0.51)_(−0.44)×10^(−15),or equivalently the energy density parameter per logarithm frequency isΩSTGW=2.31^(+2.19)_(−1.30)×10^(−9),at frequency of 1 year−1.However,we do not find any statistically significant evidence for the tensor transverse(TT)mode and then place the 95%upper limits as A_(TT)<3.95×10^(−15),or equivalentlyΩ^(TT)_(GW)<2.16×10^(−9),at frequency of 1 year^(−1).
基金supported by the National Key Research and Development Program of China(2022YFF0503304,and 2022YFF0503301)the National Natural Science Foundation of China(11921003,and 12003069)+1 种基金the New Cornerstone Science Foundation through the XPLORER PRIZE,the Chinese Academy of Sciencesthe Entrepreneurship and Innovation Program of Jiangsu Province。
文摘Several Pulsar Timing Array(PTA)Collaborations have recently provided strong evidence for a n Hz Stochastic Gravitational-Wave Background(SGWB).Here we investigate the implications of a firstorder phase transition occurring within the early Universe's dark quantum chromodynamics epoch,specifically within the framework of the mirror twin Higgs dark sector model.Our analysis indicates a distinguishable SGWB signal originating from this phase transition,which can explain the measurements obtained by PTAs.Remarkably,a significant portion of the parameter space for the SGWB signal also effectively resolves the existing tensions in both the H_(0) and S_(8) measurements in Cosmology.This intriguing correlation suggests a possible common origin of these three phenomena for 0.2<ΔN_(eff)<0.5,where the mirror dark matter component constitutes less than 30% of the total dark matter abundance.Nextgeneration CMB experiments such as CMB-S4 can test this parameter region.
基金supported in part by the National Key R&D Program of China(2021YFC2203100)CAS Young Interdisciplinary Innovation Team(JCTD-2022–20)+8 种基金the National Natural Science Foundation of China(11875113,11961131007,12261131497,12003029,11833005,and 12192224)the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(B23042)Fundamental Research Funds for Central Universitiesthe Disposizione del Presidente INFN n.24433 in INFN Sezione di MilanoChina Postdoctoral Science Foundation(2023TQ0355)CSC Innovation Talent FundsUSTC Fellowship for International CooperationUSTC Research Funds of the Double First-Class InitiativeCAS project for young scientists in basic research(YSBR-006)。
基金supported by the National Key Research and Development Program of China (Grant No.2020YFC2201502)the National Natural Science Foundation of China (Grant Nos.11975019,11690021,11991052,and 12047503)+2 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (Grant No.ZDBS-LY-7009)the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No.YSBR006)the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB15)。
文摘We perform the first search for an isotropic non-tensorial gravitational-wave background(GWB) allowed in general metric theories of gravity in the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) 12.5-year data set. By modeling the GWB as a power-law spectrum, we find strong Bayesian indication for a spatially correlated process with scalar transverse(ST) correlations whose Bayes factor versus the spatially uncorrelated common-spectrum process is 107 ± 7, but no statistically significant evidence for the tensor transverse, vector longitudinal, and scalar longitudinal polarization modes. The median and the 90% equal-tail amplitudes of ST mode are ■ , or equivalently the energy density parameter per logarithm frequency is ■, at frequency of 1/year.
基金supported by the National Natural Science Foundation of China(12105248,11821505,12075300,and 12335005)the Peng-Huan-Wu Theoretical Physics Innovation Center(12047503)+1 种基金the Key R&D Program of the Ministry of Science and Technology(2017YFA0402204)the Key Research Program of the Chinese Academy of Sciences(XDPB15)。
基金supported by the National Natural Science Foundation of China(Grant Nos.12250010,11975019,11991052,and 12047503)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-7009)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-006)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)supported by the National Natural Science Foundation of China(Grant Nos.12247176,and 12247112)the China Postdoctoral Science Foundation Fellowship(Grant No.2022M710429)。
文摘Several pulsar timing array(PTA)collaborations,including NANOGrav,EPTA,PPTA,and CPTA,have announced the evidence for a stochastic signal consistent with a stochastic gravitational wave background(SGWB).Supermassive black hole binaries(SMBHBs)are supposed to be the most promising gravitational-wave(GW)sources for this signal.In this paper,we use the NANOGrav 15-year data set to constrain the parameter space in an astro-informed formation model for SMBHBs.Our results prefer a large turn-over eccentricity of the SMBHB orbit when GWs begin to dominate the SMBHB evolution.Furthermore,the SGWB spectrum is extrapolated to the space-borne GW detector frequency band by including inspiral-merge-cutoff phases of SMBHBs,indicating that the SGWB from SMBHBs should be detected by LISA,Taiji and Tian Qin in the near future.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC2201502)supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sk?odowska-Curie(Grant No.754496)+4 种基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-006)the National Natural Science Foundation of China(Grant No.12047503)the Japan Society for the Promotion of Science Grant-in-Aid for Early-Career Scientists(Grant No.JP20K14461)the World Premier International Research Center Initiative(WPI Initiative),MEXT,Japan。
文摘Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year data, which might be the first detection of the stochastic background of gravitational waves(GWs). We show that the amplitude and the power index of such waves imply that they could be the secondary GWs induced by the peaked curvature perturbation with a dust-like post inflationary era with-0.091 ≤ w ≤ 0.048. Such stochastic background of GWs naturally predicts substantial existence of planet-mass primordial black holes(PBHs), which can be the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment(OGLE).