Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analy...Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.展开更多
通过分析用于检测流体参数的微型热敏传感器的工作原理,针对恒流和恒温驱动电路驱动的此类传感器组成的系统,提出了对微型热敏传感器系统动态特性分析的依据和计算设计方法。并且通过对一阶恒流电路驱动传感器系统的时间常数和二阶恒温...通过分析用于检测流体参数的微型热敏传感器的工作原理,针对恒流和恒温驱动电路驱动的此类传感器组成的系统,提出了对微型热敏传感器系统动态特性分析的依据和计算设计方法。并且通过对一阶恒流电路驱动传感器系统的时间常数和二阶恒温电路驱动传感器系统的响应频率的计算和分析,得到基于M EM S技术的热敏传感器系统的时域、频域参数的计算和设计依据,为此类传感器的器件设计和性能分析提供了重要的参考依据。展开更多
基于油浸式变压器的顶层油温-绕组等效热路,提出了一种主变压器绕组热点温度的解析模型,该模型能够根据当前采集的主变负载系数和顶层油温数据,实时计算热点温度。相应提出了绕组时间常数的确定方案。通过对某334 MV·A/500 k V主...基于油浸式变压器的顶层油温-绕组等效热路,提出了一种主变压器绕组热点温度的解析模型,该模型能够根据当前采集的主变负载系数和顶层油温数据,实时计算热点温度。相应提出了绕组时间常数的确定方案。通过对某334 MV·A/500 k V主变压器进行实例计算与分析,并将结果与通过GB/T 15164—1994标准中的热点温度计算公式计算的结果进行比较,验证了所提出热点温度模型及计算方法的有效性和正确性,同时指出了GB/T 15164—1994标准中热点温度计算公式存在的缺陷。展开更多
基金This work was financially supported by the National Key Science-Technology Project during the Tenth Five-Year-Plan period of China under Grant No.2001BA609A and No.2004BA615A.
文摘Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.
文摘通过分析用于检测流体参数的微型热敏传感器的工作原理,针对恒流和恒温驱动电路驱动的此类传感器组成的系统,提出了对微型热敏传感器系统动态特性分析的依据和计算设计方法。并且通过对一阶恒流电路驱动传感器系统的时间常数和二阶恒温电路驱动传感器系统的响应频率的计算和分析,得到基于M EM S技术的热敏传感器系统的时域、频域参数的计算和设计依据,为此类传感器的器件设计和性能分析提供了重要的参考依据。