For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydrauli...For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.展开更多
The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,...The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.展开更多
Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performa...The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.展开更多
For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The resear...For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.展开更多
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with t...The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance, it is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
This paper investigates the stability of LCL-filtered grid-connected inverters with capacitor current feedback(CCF) active damping. The impact of time delays in the digital controller on active damping and its equival...This paper investigates the stability of LCL-filtered grid-connected inverters with capacitor current feedback(CCF) active damping. The impact of time delays in the digital controller on active damping and its equivalent virtual impedance is analyzed. The inherent relationship between these time delays and stability is illustrated.Specially, a critical value of the CCF active damping coefficient kdamp_cis proposed to define three distinct regions of stability evaluation. If kdamp_c[ 0, a sufficient but smaller damping coefficient(kdamp\ kdamp_c) is recommended as optimum damping solution;if kdamp_c= 0,system will be unstable irrespective of active damping;and if kdamp_c\ 0, active damping is not necessary to design a stable system. Necessary conditions to ensure stability are identified;guidelines for controller design are then presented to optimize the performance of active damping and dynamic response. Simulation and experimental results confirm the presented analysis.展开更多
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.
基金This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).
文摘The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
文摘The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.
基金supported by Doctoral Foundation of Ministry of Education of China (Grant No.20070006011)
文摘For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.
基金Project supported by the Scientific Research Foundation for Returned Overseas Chinese Scholar of Ministry of Eduction, China (No.2006-331)
文摘The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance, it is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
基金supported by National Key Research and Development Program of China(No.2016YFB0100700)
文摘This paper investigates the stability of LCL-filtered grid-connected inverters with capacitor current feedback(CCF) active damping. The impact of time delays in the digital controller on active damping and its equivalent virtual impedance is analyzed. The inherent relationship between these time delays and stability is illustrated.Specially, a critical value of the CCF active damping coefficient kdamp_cis proposed to define three distinct regions of stability evaluation. If kdamp_c[ 0, a sufficient but smaller damping coefficient(kdamp\ kdamp_c) is recommended as optimum damping solution;if kdamp_c= 0,system will be unstable irrespective of active damping;and if kdamp_c\ 0, active damping is not necessary to design a stable system. Necessary conditions to ensure stability are identified;guidelines for controller design are then presented to optimize the performance of active damping and dynamic response. Simulation and experimental results confirm the presented analysis.