期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
NEURAL NETWORK SMITH PREDICTIVE CONTROL FOR TELEROBOTS WITH TIME DELAY 被引量:3
1
作者 黄金泉 徐亮 Frank L Lewis 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期35-40,共6页
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure... A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy. 展开更多
关键词 TELEROBOT time delay s ystem neural networks Smith predictor
下载PDF
Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks
2
作者 Enli Wu Yao Wang Fei Luo 《Journal of Applied Mathematics and Physics》 2023年第9期2533-2544,共12页
This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain par... This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results. 展开更多
关键词 neural networks SYNCHRONIZATION time delays Stochastic Perturbation Adaptive Control
下载PDF
Adaptive output feedback control for nonlinear time-delay systems using neural network 被引量:9
3
作者 Weisheng CHEN Junmin LI 《控制理论与应用(英文版)》 EI 2006年第4期313-320,共8页
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi... This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples. 展开更多
关键词 time delay Nonlinear system neural network BACKSTEPPING Output feedback Adaptive control
下载PDF
Adaptive Neural Network Dynamic Surface Control for Perturbed Nonlinear Time-delay Systems 被引量:4
4
作者 Geng Ji 《International Journal of Automation and computing》 EI 2012年第2期135-141,共7页
This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown ... This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach. 展开更多
关键词 Adaptive control dynamic surface control neural network nonlinear time delay system stability analysis.
下载PDF
Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network 被引量:4
5
作者 Mou Chen Chang-Sheng Jiang Qing-Xian Wu 《International Journal of Automation and computing》 EI 2008年第4期401-405,共5页
In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncer... In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer. 展开更多
关键词 Uncertain nonlinear system time delay radial basis function (RBF) neural network sliding mode observer fault diag-nosis.
下载PDF
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
6
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability delay
下载PDF
Novel delay-dependent stability analysis of Takagi-Sugeno fuzzy uncertain neural networks with time varying delays 被引量:1
7
作者 M. Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期49-60,共12页
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria usi... This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature. 展开更多
关键词 neutral neural networks linear matrix inequality Lyapunov stability time varying delays
下载PDF
GLOBAL STABILITY IN HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED TIME DELAYS 被引量:1
8
作者 Zhang Jiye Wu Pingbo Dai Huanyun (Traction Power National Laboratory, Southwest Jiaotong University, Chengdu 610031) 《Journal of Electronics(China)》 2001年第2期147-154,共8页
In this paper, without assuming the boundedness, monotonicity and differentiability of the activation functions, the conditions ensuring existence, uniqueness, and global asymptotical stability of the equilibrium poin... In this paper, without assuming the boundedness, monotonicity and differentiability of the activation functions, the conditions ensuring existence, uniqueness, and global asymptotical stability of the equilibrium point of Hopfield neural network models with distributed time delays are studied. Using M-matrix theory and constructing proper Liapunov functionals, the sufficient conditions for global asymptotic stability are obtained. 展开更多
关键词 Distributed time delayS neural network GLOBAL ASYMPTOTIC stability M-MATRIX
下载PDF
CONDITIONS OF ASYMPTOTIC STABILITY FOR CELLULAR NEURAL NETWORKS WITH TIME DELAY 被引量:1
9
作者 Wu Zhongfu Liao Xiaofeng Yu Juebang(Institute of Computer, Chongqing University, Chongqing 400044, China) (Dept. of Opto-electrnoic Technology, UESTC, Chengdu 610054, China) 《Journal of Electronics(China)》 2000年第4期345-351,共7页
In this paper, global asymptotic stability for cellular neural networks with time delay is discussed using a novel Liapunov function. Some novel sufficient conditions for global asymptotic stability are obtained. Thos... In this paper, global asymptotic stability for cellular neural networks with time delay is discussed using a novel Liapunov function. Some novel sufficient conditions for global asymptotic stability are obtained. Those results are simple and practical than those given by P. P. Civalleri, et al., and have a leading importance to design cellular neural networks with time delay. 展开更多
关键词 time delay Cellular neural networks LIAPUNOV function Global ASYMPTOTIC stability SUFFICIENT condition
下载PDF
Delay dependent stability criteria for recurrent neural networks with time varying delays 被引量:1
10
作者 Zhanshan WANG Huaguang ZHANG 《控制理论与应用(英文版)》 EI 2009年第1期9-13,共5页
This paper aims to present some delay-dependent global asymptotic stability criteria for recurrent neural networks with time varying delays. The obtained results have no restriction on the magnitude of derivative of t... This paper aims to present some delay-dependent global asymptotic stability criteria for recurrent neural networks with time varying delays. The obtained results have no restriction on the magnitude of derivative of time varying delay, and can be easily checked due to the form of linear matrix inequality. By comparison with some previous results, the obtained results are less conservative. A numerical example is utilized to demonstrate the effectiveness of the obtained results. 展开更多
关键词 Recurrent neural networks STABILITY time varying delay Linear matrix inequality
下载PDF
Design of passive filters for time-delay neural networks with quantized output
11
作者 Jing Han Zhi Zhang +1 位作者 Xuefeng Zhang Jianping Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期156-163,共8页
Passive filtering of neural networks with time-invariant delay and quantized output is considered.A criterion on the passivity of a filtering error system is proposed by means of the Lyapunov-Krasovskii functional and... Passive filtering of neural networks with time-invariant delay and quantized output is considered.A criterion on the passivity of a filtering error system is proposed by means of the Lyapunov-Krasovskii functional and the Bessel-Legendre inequality.Based on the criterion,a design approach for desired passive filters is developed in terms of the feasible solution of a set of linear matrix inequalities.Then,analyses and syntheses are extended to the time-variant delay situation using the reciprocally convex combination inequality.Finally,a numerical example with simulations is used to illustrate the applicability and reduced conservatism of the present passive filter design approaches. 展开更多
关键词 neural networks time delay QUANTIZATION FILTERING
下载PDF
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
12
作者 张强 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期125-128,共4页
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit... The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays. 展开更多
关键词 discrete time delayed Hopfield neural networks difference inequality
下载PDF
Finite-time Mittag-Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
13
作者 Guan Wang Zhixia Ding +2 位作者 Sai Li Le Yang Rui Jiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期297-306,共10页
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu... Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions. 展开更多
关键词 finite-time Mittag-Leffler synchronization fractional-order complex-valued memristive neural networks time delay
下载PDF
Global exponential stability of cellular neural networks with time delays
14
作者 刘坚 裴冀南 《Journal of Chongqing University》 CAS 2008年第2期137-140,共4页
By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.Th... By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.The criteria do not require such conditions as boundedness and differentiability of activation functions.The conditions of the theorem were verified. 展开更多
关键词 cellular neural network time delay global exponential stability spectral radius
下载PDF
Existence and Exponential Stability of Almost Periodic Solutions to General BAM Neural Networks with Leakage Delays on Time Scales
15
作者 DONG Yan-shou HAN Yan DAI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2022年第2期189-202,共14页
In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations ... In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date. 展开更多
关键词 Almost periodic solution neural network time scale Leakage delay Existence and exponential stability
下载PDF
Dynamics of a multiplex neural network with delayed couplings 被引量:2
16
作者 Xiaochen MAO Xingyong LI +3 位作者 Weijie DING Song WANG Xiangyu ZHOU Lei QIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第3期441-456,共16页
Multiplex networks have drawn much attention since they have been observed in many systems,e.g.,brain,transport,and social relationships.In this paper,the nonlinear dynamics of a multiplex network with three neural gr... Multiplex networks have drawn much attention since they have been observed in many systems,e.g.,brain,transport,and social relationships.In this paper,the nonlinear dynamics of a multiplex network with three neural groups and delayed interactions is studied.The stability and bifurcation of the network equilibrium are discussed,and interesting neural activities of the network are explored.Based on the neuron circuit,transfer function circuit,and time delay circuit,a circuit platform of the network is constructed.It is shown that delayed couplings play crucial roles in the network dynamics,e.g.,the enhancement and suppression of the stability,the patterns of the synchronization between networks,and the generation of complicated attractors and multi-stability coexistence. 展开更多
关键词 neural network time delay SYNCHRONIZATION coexisting attractor
下载PDF
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
17
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
下载PDF
Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
18
作者 Yu-Jiao Huang Xiao-Yan Yuan +2 位作者 Xu-Hua Yang Hai-Xia Long Jie Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期196-205,共10页
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficie... This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results. 展开更多
关键词 FRACTIONAL-ORDER COHEN-GROSSBERG neural networks MULTIPLE LAGRANGE STABILITY MULTIPLE LYAPUNOV asymptotical STABILITY time delays
下载PDF
Novel criteria for global exponential stability and periodic solutions of delayed Hopfield neural networks
19
作者 高潮 《Journal of Chongqing University》 CAS 2003年第1期73-77,共5页
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided... The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays. 展开更多
关键词 Hopfield neural network time delay global exponentially stability periodic solution
下载PDF
Stability Analysis for Stochastic Delayed High-order Neural Networks
20
作者 舒慧生 吕增伟 魏国亮 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期73-77,共5页
In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stabilit... In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibtium paint in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria. 展开更多
关键词 high-order neural networks stochastic systems time delays Lyapunov-Krasovskii functional global asymptotic stability linear matrix inequality
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部