Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location ...Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.展开更多
A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arr...A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arrival(FDOA) measurements of a signal received at a number of receivers.The maximum likelihood(ML) technique is a powerful tool to solve this problem.But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space,and it is very computationally expensive,and prohibits real-time processing.On the basis of ML function,a closed-form approximate solution to the ML equations can be obtained,which can allow real-time implementation as well as global convergence.Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares(WLS) approach,which makes it possible to attain the Cramér-Rao lower bound(CRLB) at a sufficiently high noise level before the threshold effect occurs.展开更多
基金supported by the National Natural Science Foundation of China(6140236561271300)the 13th Five-Year Weaponry PreResearch Project。
文摘Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.
基金National High-tech Research and Development Program of China (2010AA7010422,2011AA7014061)
文摘A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arrival(FDOA) measurements of a signal received at a number of receivers.The maximum likelihood(ML) technique is a powerful tool to solve this problem.But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space,and it is very computationally expensive,and prohibits real-time processing.On the basis of ML function,a closed-form approximate solution to the ML equations can be obtained,which can allow real-time implementation as well as global convergence.Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares(WLS) approach,which makes it possible to attain the Cramér-Rao lower bound(CRLB) at a sufficiently high noise level before the threshold effect occurs.