To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)metho...To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localizati...Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.展开更多
As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardne...As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.展开更多
The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA position...The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.展开更多
For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve...For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.展开更多
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari...Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.展开更多
Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u...Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.展开更多
To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time di...To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.展开更多
For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on t...For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.展开更多
For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the...For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.展开更多
This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method ...This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.展开更多
For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved pe...For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.展开更多
By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating ...By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w...As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.展开更多
The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute th...The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.展开更多
In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of ...In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of time difference of arrival,the location estimation is expressed as an optimal problem of a non-linear programming.Then,an initial point is obtained using the semi-definite programming.And finally,the location is extracted from the local optimal solution acquired by Newton iterations.Simulation results show that when the number of anchor nodes is large,the performance of the proposed algorithm will be significantly better than that of semi-definite programming approach with the increase of measurement noise.展开更多
In the underwater medium,the speed of sound varies with water depth,temperature,and salinity.The inhomogeneity of water leads to bending of sound rays,making the existing localization algorithms based on straightline ...In the underwater medium,the speed of sound varies with water depth,temperature,and salinity.The inhomogeneity of water leads to bending of sound rays,making the existing localization algorithms based on straightline propagation less precise.To realize high-precision node positioning in underwater acoustic sensor networks(UASNs),a multi-layer isogradient sound speed profile(SSP)model is developed using the linear segmentation approximation approach.Then,the sound ray tracking problem is converted into a polynomial root-searching problem.Based on the derived gradient of the signal’s Doppler shift at the sensor node,a novel underwater node localization algorithm is proposed using both the time difference of arrival(TDOA)and frequency difference of arrival(FDOA).Simulations are implemented to illustrate the effectiveness of the proposed algorithm.Compared with the traditional straight-line propagation method,the proposed algorithm can effectively handle the sound ray bending phenomenon.Estimation accuracy with different SSP modeling errors is also investigated.Overall,accurate and reliable node localization can be achieved.展开更多
Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWL...Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.展开更多
基金supported in part by National Key R&D Program of China under Grants 2020YFB1807602 and 2020YFB1807600National Science Foundation of China(61971217,61971218,61631020,61601167)+1 种基金the Fund of Sonar Technology Key Laboratory(Range estimation and location technology of passive target viamultiple array combination),Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z013)China Postdoctoral Science Foundation(2020M681585).
文摘To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
基金National Natural Science Foundation of China(No.61227003)National Program on Key Basic Research Program(973Program)(No.2013CB311804)
文摘Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.
基金supported by the National Natural Science Foundation of China(61472443)the Basic Research Priorities Program of Shaanxi Province Natural Science Foundation of China(2013JQ8042)
文摘As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.
基金supported by the National Natural Science Foundation of China (61502522)Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金Equipment Pre-Research Ministry of Education Joint Fund (6141A02033703)Hubei Provincial Natural Scie nce Foundation (2019CFC897)。
文摘The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.
基金supported by the National Natural Science Foundationof China(61201208)
文摘For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806102)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+2 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)。
文摘Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.
基金supported by the National Natural Science Foundation of China (62101359)Sichuan University and Yibin Municipal People’s Government University and City Strategic Cooperation Special Fund Project (2020CDYB-29)+1 种基金the Science and Technology Plan Transfer Payment Project of Sichuan Province (2021ZYSF007)the Key Research and Development Program of Science and Technology Department of Sichuan Province (2020YFS0575,2021KJT0012-2 021YFS-0067)。
文摘Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.
基金This work was supported by the National Natural Science Foundation of China(61502522)the Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金the Equipment Pre-Research Ministry of Education Joint Fund(6141A02033703)the Hubei Provincial Natural Science Foundation(2019CFC897).
文摘To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.
基金supported by The Science and Technology Innovation Team Plan of Shaanxi Province (2017-KCT-30-02)The Key Research and Development Program of Shaanxi Province (2018GY-150)+1 种基金The Foundation Research Project of Shaanxi Province (The Natural Science Fund. 2018JQ6093)The Science and Technology Plan Project of Xi’an City (201805040YD18CG24-3)
文摘For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.
基金Supported by the National Natural Science Foundation of China (No. 60825104,61072107)the National Postdoctor Fundation (No. 20090451251)+1 种基金the Shaanxi Industry Surmount Foundation (2009K08-31)the Fundamental Research Funds for the Central Universities(JY10000-902025) of China
文摘For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.
基金the auspices of the National“973”Key Project for base research on urban traffic monitoring and management system(G1998030408)
文摘This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.
基金supported by the National Natural Science Foundation of China(6107210761271300)+4 种基金the Shaanxi Industry Surmount Foundation(2012K06-12)the Arm and Equipment Pre-research Foundationthe Fundamental Research Funds for the Central Universities of China(K0551302006K5051202045K50511020024)
文摘For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422 2011AA7014061)
文摘By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.
基金the Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.20050248043)
文摘As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.
基金supported by the National Natural Science Foundation of China(61101173)
文摘The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.
基金This study was supported by the“High level research and training project for professional leaders of teachers in Higher Vocational Colleges in Jiangsu Province”.
文摘In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of time difference of arrival,the location estimation is expressed as an optimal problem of a non-linear programming.Then,an initial point is obtained using the semi-definite programming.And finally,the location is extracted from the local optimal solution acquired by Newton iterations.Simulation results show that when the number of anchor nodes is large,the performance of the proposed algorithm will be significantly better than that of semi-definite programming approach with the increase of measurement noise.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0305900)the Zhejiang University K.P.Chao’s High Technology Development Foundation(No.2020ZL013)。
文摘In the underwater medium,the speed of sound varies with water depth,temperature,and salinity.The inhomogeneity of water leads to bending of sound rays,making the existing localization algorithms based on straightline propagation less precise.To realize high-precision node positioning in underwater acoustic sensor networks(UASNs),a multi-layer isogradient sound speed profile(SSP)model is developed using the linear segmentation approximation approach.Then,the sound ray tracking problem is converted into a polynomial root-searching problem.Based on the derived gradient of the signal’s Doppler shift at the sensor node,a novel underwater node localization algorithm is proposed using both the time difference of arrival(TDOA)and frequency difference of arrival(FDOA).Simulations are implemented to illustrate the effectiveness of the proposed algorithm.Compared with the traditional straight-line propagation method,the proposed algorithm can effectively handle the sound ray bending phenomenon.Estimation accuracy with different SSP modeling errors is also investigated.Overall,accurate and reliable node localization can be achieved.
基金supported by the National Natural Science Foundation of China(61201282)the Science and Technology on Communication Information Security Control Laboratory Foundation(9140C130304120C13064)
文摘Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.