The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in h...The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.展开更多
A hybrid finite element-Laplace transform method is implemented to analyze the time domain electromagnetic scattering induced by a 2-D overfilled cavity embedded in the infinite ground plane.The algorithm divides the ...A hybrid finite element-Laplace transform method is implemented to analyze the time domain electromagnetic scattering induced by a 2-D overfilled cavity embedded in the infinite ground plane.The algorithm divides the whole scattering domain into two,interior and exterior,sub-domains.In the interior sub-domain which covers the cavity,the problem is solved via the finite element method.The problem is solved analytically in the exterior sub-domain which slightly overlaps the interior subdomain and extends to the rest of the upper half plane.The use of the Laplace transform leads to an analytical link condition between the overlapping sub-domains.The analytical link guides the selection of the overlapping zone and eliminates the need to use the conventional Schwartz iteration.This dramatically improves the efficiency for solving transient scattering problems.Numerical solutions are tested favorably against analytical ones for a canonical geometry.The perfect link over the artificial boundary between the finite element approximation in the interior and analytical solution in the exterior further indicates the reliability of the method.An error analysis is also performed.展开更多
基金This work was supported by the Geology and Mineral Resources Investigation and Evaluation Program(No.12120115006601 and No.DD20160181)the National key Research and Development projects(No.2016YFC060110204 and No.2016YFC060110305).
文摘The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.
基金This workwas supported in part by the Air Force Office of Scientific Research.
文摘A hybrid finite element-Laplace transform method is implemented to analyze the time domain electromagnetic scattering induced by a 2-D overfilled cavity embedded in the infinite ground plane.The algorithm divides the whole scattering domain into two,interior and exterior,sub-domains.In the interior sub-domain which covers the cavity,the problem is solved via the finite element method.The problem is solved analytically in the exterior sub-domain which slightly overlaps the interior subdomain and extends to the rest of the upper half plane.The use of the Laplace transform leads to an analytical link condition between the overlapping sub-domains.The analytical link guides the selection of the overlapping zone and eliminates the need to use the conventional Schwartz iteration.This dramatically improves the efficiency for solving transient scattering problems.Numerical solutions are tested favorably against analytical ones for a canonical geometry.The perfect link over the artificial boundary between the finite element approximation in the interior and analytical solution in the exterior further indicates the reliability of the method.An error analysis is also performed.