Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspect...Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.展开更多
This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S co...This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S computing mode. The results of field application show the new system has good capability, reliability and expandability.展开更多
To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of c...To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.展开更多
This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact...This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.展开更多
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ...Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydrauli...For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.展开更多
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extrac...A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.展开更多
The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,...The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.展开更多
Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for f...Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for fractional time⁃delay system was proposed.In addition,Lyapunov stability theorem was used to analyze the control scheme theoretically,which guaranteed the stability of commensurate and non⁃commensurate order systems with or without uncertainties and disturbances.Furthermore,to illustrate the feasibility of controller,the conditions for designing the controller parameters were derived.Finally,the simulation results presented the effectiveness of the designed strategy.展开更多
The sliding mode control problem (SMC) is studied for a class of uncertain delay system in the presence of both parameter uncertainties and external disturbances. A novel virtual feedback control method is presented...The sliding mode control problem (SMC) is studied for a class of uncertain delay system in the presence of both parameter uncertainties and external disturbances. A novel virtual feedback control method is presented. Based on Lyapunov theory, sufficient conditions for design of the robust sliding mode plane are derived. Sliding mode controller based on reaching law concept is developed, which is to ensure system trajectories from any initial conditions asymptotically convergent to sliding mode plane. The global asymptotically stability of the closed-loop system is guaranteed. A numerical example with simulation results is given to illustrate the effectiveness of the methodology.展开更多
A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under considera...A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under consideration, which may be useful in specific applications. The proposed method, different from many existing terminal sliding model control desin methods, is studied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.展开更多
The attitude tracking operations of an on-orbit spacecraft with degraded performance exhibited by potential actuator uncertainties(including failures and misalignments) can be extraordinarily challenging. Thus, the co...The attitude tracking operations of an on-orbit spacecraft with degraded performance exhibited by potential actuator uncertainties(including failures and misalignments) can be extraordinarily challenging. Thus, the control law development for the attitude tracking task of spacecraft subject to actuator(namely reaction wheel) uncertainties is addressed in this paper. More specially, the attitude dynamics model of the spacecraft is firstly established under actuator failures and misalignment(without a small angle approximation operation). Then, a new non-singular sliding manifold with fixed time convergence and anti-unwinding properties is proposed, and an adaptive sliding mode control(SMC) strategy is introduced to handle actuator uncertainties, model uncertainties and external disturbances simultaneously. Among this, an explicit misalignment angles range that could be treated herein is offered. Lyapunov-based stability analyses are employed to verify that the reaching phase of the sliding manifold is completed in finite time, and the attitude tracking errors are ensured to converge to a small region of the closest equilibrium point in fixed time once the sliding manifold enters the reaching phase. Finally, the beneficial features of the designed controller are manifested via detailed numerical simulation tests.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint...This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.展开更多
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a slidin...In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.展开更多
This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior k...This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior knowledge of the bounds. On the basis of feedback linearization of the aircraft-cargo motion system, a novel integral sliding mode flight control law with gains adaptation is proposed. It contains a nominal control law used to achieve finite-time stabilization performance and a compensated control law used to reject the uncertainties. The switching gains of the compensated control law are tuned using adaptation algorithms, and the knowledge of the bounds of the uncertainties is not required to be known in advance. Meanwhile, the severe chattering of the sliding mode control that caused by high switching gains is effectively reduced. The controller and its performance are evaluated on a transport aircraft performing a maximum load airdrop task in a number of simulation scenarios.展开更多
基金National Natural Science Foundation of China(Grant No.62071433)National Key R&D Program of China(Grant No.2022YFC3005002)。
文摘Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.
文摘This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S computing mode. The results of field application show the new system has good capability, reliability and expandability.
文摘To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.
基金supported by the National Natural Science Foundation of China(5137917651679201)
文摘This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521065)
文摘Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.
基金supported by the National Natural Science Foundation of China (60472021).
文摘A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
基金This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).
文摘The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science Foundation of Anhui Province(No.1208085M F93)the 211 Innovation Team of Anhui University(Nos.KJTD007A and KJTD001B).
文摘Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for fractional time⁃delay system was proposed.In addition,Lyapunov stability theorem was used to analyze the control scheme theoretically,which guaranteed the stability of commensurate and non⁃commensurate order systems with or without uncertainties and disturbances.Furthermore,to illustrate the feasibility of controller,the conditions for designing the controller parameters were derived.Finally,the simulation results presented the effectiveness of the designed strategy.
基金This project was supported by the National Natural Science Foundation of China (69974017)
文摘The sliding mode control problem (SMC) is studied for a class of uncertain delay system in the presence of both parameter uncertainties and external disturbances. A novel virtual feedback control method is presented. Based on Lyapunov theory, sufficient conditions for design of the robust sliding mode plane are derived. Sliding mode controller based on reaching law concept is developed, which is to ensure system trajectories from any initial conditions asymptotically convergent to sliding mode plane. The global asymptotically stability of the closed-loop system is guaranteed. A numerical example with simulation results is given to illustrate the effectiveness of the methodology.
基金This work was supported in part by NNSF and Project 973 of China(No.60221301 and No.60334040)
文摘A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under consideration, which may be useful in specific applications. The proposed method, different from many existing terminal sliding model control desin methods, is studied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.
基金supported in part by the National Natural Science Foundation of China(61960206011,62227812)the Beijing Natural Science Foundation(JQ19017)+1 种基金the National Key Basic Research Program“Gravitational Wave Detection”Project(2021YFC2202600)the Beijing Advanced Discipline Center for Unmanned Aircraft System。
文摘The attitude tracking operations of an on-orbit spacecraft with degraded performance exhibited by potential actuator uncertainties(including failures and misalignments) can be extraordinarily challenging. Thus, the control law development for the attitude tracking task of spacecraft subject to actuator(namely reaction wheel) uncertainties is addressed in this paper. More specially, the attitude dynamics model of the spacecraft is firstly established under actuator failures and misalignment(without a small angle approximation operation). Then, a new non-singular sliding manifold with fixed time convergence and anti-unwinding properties is proposed, and an adaptive sliding mode control(SMC) strategy is introduced to handle actuator uncertainties, model uncertainties and external disturbances simultaneously. Among this, an explicit misalignment angles range that could be treated herein is offered. Lyapunov-based stability analyses are employed to verify that the reaching phase of the sliding manifold is completed in finite time, and the attitude tracking errors are ensured to converge to a small region of the closest equilibrium point in fixed time once the sliding manifold enters the reaching phase. Finally, the beneficial features of the designed controller are manifested via detailed numerical simulation tests.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
基金supported by National Natural Science Foundation of China(61125306,91016004)Foundation of Ministry of Education of China(20110092110020,20120092110026)the Post-Doctoral Research Funds(1108000137,3208004602)
文摘This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.
文摘In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
基金supported by the National Natural Science Foundation of China(61273141)Aviation Science Foundation of China(20141396012)
文摘This paper investigates the problem of designing a fast convergent sliding mode flight controller of a transport aircraft for heavyweight airdrop operations in the presence of bounded uncertainties without the prior knowledge of the bounds. On the basis of feedback linearization of the aircraft-cargo motion system, a novel integral sliding mode flight control law with gains adaptation is proposed. It contains a nominal control law used to achieve finite-time stabilization performance and a compensated control law used to reject the uncertainties. The switching gains of the compensated control law are tuned using adaptation algorithms, and the knowledge of the bounds of the uncertainties is not required to be known in advance. Meanwhile, the severe chattering of the sliding mode control that caused by high switching gains is effectively reduced. The controller and its performance are evaluated on a transport aircraft performing a maximum load airdrop task in a number of simulation scenarios.