An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordi- nary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller tha...An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordi- nary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps. Two methods of imposing initial conditions are given, which avoids the tediousness when derivative initial conditions are imposed, and the numerical comparisons indicate that the first method, in which the analog equations of initial displacements and velocities are used to directly replace the differential quadra- ture (DQ) analog equations of ODEs at the first and the last sampling points, respectively, is much more accurate than the second method, in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points. On the contrary to the conventional step-by-step direct integration schemes, the solutions at all sampling points can be obtained simultaneously by DQTEM, and generally, one differential quadrature time element may be enough for the whole time domain. Extensive numerical comparisons validate the effi- ciency and accuracy of the proposed method.展开更多
This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted...This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical ques...The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical questions of its numerical implementation are extensively discussed. Several examples of how the incubation time fracture criterion can be used as fracture condition in finite element computations are given. The examples include simulations of dynamic crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media), spall fracture in plates, propagation of cracks in pipelines. Applicability of the approach to model initiation, development and arrest of dynamic fracture is claimed.展开更多
A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding tim...A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding time-space boundary integral equation: is obtained. Then, a set of time domain boundary element equations with recurrence form is immediately formulated through discretization in both time and boundary. After having carried out the numerical calculation two solutions are found in which a rigid semicircular cylinder and a rigid wedge with infinite length suffer normal impact on the surface of a half-space fluid. The results show that the present method is more efficient than the previous ones.展开更多
The traditional one-dimensional ultrasonic beam steering has time delay and is thus a complicated problem. A numerical model of ultrasonic beam steering using Neumann boundary condition in multiplysics is presented in...The traditional one-dimensional ultrasonic beam steering has time delay and is thus a complicated problem. A numerical model of ultrasonic beam steering using Neumann boundary condition in multiplysics is presented in the present paper. This model is based on the discrete wave number method that has been proved theoretically to satisfy the continuous conditions. The propagating angle of novel model is a function of the distance instead of the time domain. The propagating wave fronts at desired angles are simulated with the single line sources for plane wave. The result indicates that any beam angle can be steered by discrete line elements resources without any time delay.展开更多
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth...Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.展开更多
Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. T...Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.展开更多
Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then...Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then the accuracy, CPU time and memory consumption of the higher-order node-based TDFEM are investigated. The high performance of the presented approach is validated by numerical results of the transient responses of Transverse Electric (TE) field and Transverse Magnetic (TM) field in a rectangular waveguide.展开更多
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introdu...This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2 (H1) and L2 (L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition kn ≥ ch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.展开更多
We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equa...We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approxima- tions in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations ob- tained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.展开更多
The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theore...The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.展开更多
The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and acc...The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and accuracy of this model are investigated. Parameter studies are performed; in these studies, the stiffness coefficient, the fluid time step and the processor number are varied under conditions with different numbers of particles and different particle diameters. The obtained results are compared with measurements to derive the optimum parameters for CFD/DEM simulations. The results suggest that the application of higher stiffness coefficients slightly improves the simulation accuracy. However, the average computing time increases exponentially. At larger fluid time steps, the results show that the average computation time is independent of the applied fluid time step whereas the simulation accuracy decreases greatly with increasing the fluid time step. The use of smaller time steps leads to negligible improvements in the simulation accuracy but results in an exponential rise in the average computing time. The parallelization accelerates the DEM simulations if the critical number for the domain decomposition is not reached. Above this number, the performance is no longer proportional to the number of processors. The critical number for the domain decomposition depends on the number of particles. An increase in solid contents results in a shift of the critical decomposition number to higher numbers of CPUs.展开更多
基金supported by the National Natural Science Foundation of China (11172028,10772014)
文摘An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordi- nary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps. Two methods of imposing initial conditions are given, which avoids the tediousness when derivative initial conditions are imposed, and the numerical comparisons indicate that the first method, in which the analog equations of initial displacements and velocities are used to directly replace the differential quadra- ture (DQ) analog equations of ODEs at the first and the last sampling points, respectively, is much more accurate than the second method, in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points. On the contrary to the conventional step-by-step direct integration schemes, the solutions at all sampling points can be obtained simultaneously by DQTEM, and generally, one differential quadrature time element may be enough for the whole time domain. Extensive numerical comparisons validate the effi- ciency and accuracy of the proposed method.
文摘This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
基金supported by RFBR research (10-01-00810-a,11-01-00491-a,10-01-91154-GFEN a),Russian Federation State contracts and academic programs of the Russian Academy of Sciences
文摘The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical questions of its numerical implementation are extensively discussed. Several examples of how the incubation time fracture criterion can be used as fracture condition in finite element computations are given. The examples include simulations of dynamic crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media), spall fracture in plates, propagation of cracks in pipelines. Applicability of the approach to model initiation, development and arrest of dynamic fracture is claimed.
基金This project is financially supported by the National Education Foundation of China.
文摘A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding time-space boundary integral equation: is obtained. Then, a set of time domain boundary element equations with recurrence form is immediately formulated through discretization in both time and boundary. After having carried out the numerical calculation two solutions are found in which a rigid semicircular cylinder and a rigid wedge with infinite length suffer normal impact on the surface of a half-space fluid. The results show that the present method is more efficient than the previous ones.
基金supported by the National Natural Science Foundation of China (10972014)
文摘The traditional one-dimensional ultrasonic beam steering has time delay and is thus a complicated problem. A numerical model of ultrasonic beam steering using Neumann boundary condition in multiplysics is presented in the present paper. This model is based on the discrete wave number method that has been proved theoretically to satisfy the continuous conditions. The propagating angle of novel model is a function of the distance instead of the time domain. The propagating wave fronts at desired angles are simulated with the single line sources for plane wave. The result indicates that any beam angle can be steered by discrete line elements resources without any time delay.
基金Funded by National Natural Science Foundation of China(Nos.51478200 and 51178202)
文摘Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.
基金the National Natural Science Foundation of China (No.60601024).
文摘Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.
基金Supported by National Natural Science Foundation of China (No. 60601024)
文摘Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then the accuracy, CPU time and memory consumption of the higher-order node-based TDFEM are investigated. The high performance of the presented approach is validated by numerical results of the transient responses of Transverse Electric (TE) field and Transverse Magnetic (TM) field in a rectangular waveguide.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 11061021), Natural Science Fund of Inner Mongolia Autonomous Region (2012MS0106, 2012MS0108), Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ12011, N J10006, NJZY13199), and the Program of Higherlevel talents of Inner Mongolia University (125119, 30105-125132).
文摘This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2 (H1) and L2 (L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition kn ≥ ch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.
文摘We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approxima- tions in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations ob- tained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.
基金The authors would like to acknowledge the financial support provided by Hebei Education Department(Grant QN2020135)the National Key R&D Program of China(Grants 2019YFC1511105 and 2019YFC1511104)the National Natural Science Foundation of China(Grant 51778193).
文摘The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.
文摘The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and accuracy of this model are investigated. Parameter studies are performed; in these studies, the stiffness coefficient, the fluid time step and the processor number are varied under conditions with different numbers of particles and different particle diameters. The obtained results are compared with measurements to derive the optimum parameters for CFD/DEM simulations. The results suggest that the application of higher stiffness coefficients slightly improves the simulation accuracy. However, the average computing time increases exponentially. At larger fluid time steps, the results show that the average computation time is independent of the applied fluid time step whereas the simulation accuracy decreases greatly with increasing the fluid time step. The use of smaller time steps leads to negligible improvements in the simulation accuracy but results in an exponential rise in the average computing time. The parallelization accelerates the DEM simulations if the critical number for the domain decomposition is not reached. Above this number, the performance is no longer proportional to the number of processors. The critical number for the domain decomposition depends on the number of particles. An increase in solid contents results in a shift of the critical decomposition number to higher numbers of CPUs.