A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time s...A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR).展开更多
In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transpor...In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.展开更多
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A ...A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms.展开更多
The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the conditio...The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.展开更多
Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, ho...Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes.展开更多
文摘A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR).
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2014JBM011 and No.2014YJS021in part by NSFC under Grant No.62171200,61422101,and 62132017+2 种基金in part by the Ph.D.Programs Foundation of MOE of China under Grant No.20130009110014in part by "NCET" under Grant No.NCET-12-0767in part by China Postdoctoral Science Foundation under Grant No.2015M570028,2015M580970
文摘In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
基金the National Natural Science Foundation of China (No.60274009)Specialized Research Fund for the DoctoralProgram of Higher Education (No.20020145007)
文摘A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms.
文摘The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.
基金partly supported by the National Natural Science Foundation of China(Grants No.61571240,61671474)the Jiangsu Science Fund for Excellent Young Scholars(No.BK20170089)+2 种基金the ZTE program“The Prediction of Wireline Network Malfunction and Traffic Based on Big Data,”(No.2016ZTE04-07)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0916)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes.