期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation 被引量:1
1
作者 MA Yan 《Chinese Quarterly Journal of Mathematics》 2016年第1期69-81,共13页
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim... Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper. 展开更多
关键词 time fractional diffusion equation finite difference approximation implicit scheme STABILITY CONVERGENCE EFFECTIVENESS
下载PDF
Green Function of Generalized Time Fractional Diffusion Equation Using Addition Formula of Mittag-Leffler Function
2
作者 Fang Wang Jinmeng Zhang 《Journal of Applied Mathematics and Physics》 2022年第9期2720-2732,共13页
In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
关键词 Mittag-Leffler Function Mellin Transforms Generalized time fractional diffusion equation Green Function Addition Formula
下载PDF
A DIRECT DISCONTINUOUS GALERKIN METHOD FOR TIME FRACTIONAL DIFFUSION EQUATIONS WITH FRACTIONAL DYNAMIC BOUNDARY CONDITIONS
3
作者 Jingjun Zhao Wenjiao Zhao Yang Xu 《Journal of Computational Mathematics》 SCIE CSCD 2024年第1期156-177,共22页
This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions.The well-posedness for the weak solutions is studied.A direct discontinuous Galer... This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions.The well-posedness for the weak solutions is studied.A direct discontinuous Galerkin approach is used in spatial direction under the uniform meshes,together with a second-order Alikhanov scheme is utilized in temporal direction on the graded mesh,and then the fully discrete scheme is constructed.Furthermore,the stability and the error estimate for the full scheme are analyzed in detail.Numerical experiments are also given to illustrate the effectiveness of the proposed method. 展开更多
关键词 time fractional diffusion equation Numerical stability CONVERGENCE
原文传递
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
4
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous Galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
Finite element multigrid method for multi-term time fractional advection diffusion equations 被引量:1
5
作者 Weiping Bu Xiangtao Liu +1 位作者 Yifa Tang Jiye Yang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第1期1-25,共25页
In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discre... In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discrete schemes of MTFADEs with different definitions on multi-term time fractional derivative are obtained.The stability and convergence of these numerical schemes are discussed.Next,a V-cycle multigrid method is proposed to solve the resulting linear systems.The convergence of the multigrid method is investigated.Finally,some numerical examples are given for verification of our theoretical analysis. 展开更多
关键词 Multi-term time fractional advection diffusion equation finite element method stability CONVERGENCE V-cycle multigrid method
原文传递
Numerical Methods for Semilinear Fractional Diffusion Equations with Time Delay 被引量:1
6
作者 Shuiping Yang Yubin Liu +1 位作者 Hongyu Liu Chao Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期56-78,共23页
In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical signific... In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical significance.We develop a novel implicit alternating direction method that can effectively and efficiently tackle the RSFDEs in both two and three dimensions.The numerical method is proved to be uniquely solvable,stable and convergent with second order accuracy in both space and time.Numerical results are presented to verify the accuracy and efficiency of the proposed numerical scheme. 展开更多
关键词 Semilinear Riesz space fractional diffusion equations with time delay implicit alternating direction method stability and convergence
原文传递
Spectral Optimization Methods for the Time Fractional Diffusion Inverse Problem 被引量:2
7
作者 Xingyang Ye Chuanju Xu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第3期499-519,共21页
An inverse problem of reconstructing the initial condition for a time fractional diffusion equation is investigated.On the basis of the optimal control framework,the uniqueness and first order necessary optimality co... An inverse problem of reconstructing the initial condition for a time fractional diffusion equation is investigated.On the basis of the optimal control framework,the uniqueness and first order necessary optimality condition of the minimizer for the objective functional are established,and a time-space spectral method is proposed to numerically solve the resulting minimization problem.The contribution of the paper is threefold:1)a priori error estimate for the spectral approximation is derived;2)a conjugate gradient optimization algorithm is designed to efficiently solve the inverse problem;3)some numerical experiments are carried out to show that the proposed method is capable to find out the optimal initial condition,and that the convergence rate of the method is exponential if the optimal initial condition is smooth. 展开更多
关键词 time fractional diffusion equation inverse problem spectral method error estimate conjugate gradient method.
原文传递
Application of low-dimensional finite element method to fractional diffusion equation
8
作者 Jincun Liu Hong Li +1 位作者 Zhichao Fang Yang Liu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2014年第4期184-200,共17页
Classical finite element method(FEM)has been applied to solve some fractional differential equations,but its scheme has too many degrees of freedom.In this paper,a low-dimensional FEM,whose number of basis functions i... Classical finite element method(FEM)has been applied to solve some fractional differential equations,but its scheme has too many degrees of freedom.In this paper,a low-dimensional FEM,whose number of basis functions is reduced by the theory of proper orthogonal decomposition(POD)technique,is proposed for the time fractional diffusion equation in two-dimensional space.The presented method has the properties of low dimensions and high accuracy so that the amount of computation is decreased and the calculation time is saved.Moreover,error estimation of the method is obtained.Numerical example is given to illustrate the feasibility and validity of the low-dimensional FEM in comparison with traditional FEM for the time fractional differential equations. 展开更多
关键词 Low-dimensional finite element method proper orthogonal decomposition time fractional diffusion equation error estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部