The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analyt...The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analytical model including the system model formulation, complex modal analysis and seismic time history analysis is presented for this purpose. A numerical example is also provided to illustrate the analytical model. The complex modal analysis is conducted to determine the optimal damping ratio, the optimal damper stiffness and the optimal damper damping of the viscoelastic dampers for each mode of the system. For the damper stiffness and damping with optimal values, the responses can be categorized into underdamped and critically damped vibrations. Furthermore, compared to the viscous dampers with only the energy dissipation mechanism, the viscoelastic dampers with both the energy dissipation and redistribution mechanisms are more effective for increasing the damping ratio of the system. The seismic time history analysis is conducted to assess the effectiveness of the viscoelastic dampers for vibration control. Based on the optimal damping ratio, the optimal damper stiffness, the optimal damper damping of the viscoelastic dampers for a certain mode of the system, and the viscoelastic dampers can be used to effectively suppress the root-mean-square responses as well as the peak responses of the two adjacent buildings.展开更多
文摘The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analytical model including the system model formulation, complex modal analysis and seismic time history analysis is presented for this purpose. A numerical example is also provided to illustrate the analytical model. The complex modal analysis is conducted to determine the optimal damping ratio, the optimal damper stiffness and the optimal damper damping of the viscoelastic dampers for each mode of the system. For the damper stiffness and damping with optimal values, the responses can be categorized into underdamped and critically damped vibrations. Furthermore, compared to the viscous dampers with only the energy dissipation mechanism, the viscoelastic dampers with both the energy dissipation and redistribution mechanisms are more effective for increasing the damping ratio of the system. The seismic time history analysis is conducted to assess the effectiveness of the viscoelastic dampers for vibration control. Based on the optimal damping ratio, the optimal damper stiffness, the optimal damper damping of the viscoelastic dampers for a certain mode of the system, and the viscoelastic dampers can be used to effectively suppress the root-mean-square responses as well as the peak responses of the two adjacent buildings.