In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w...In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.展开更多
By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The resu...By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.展开更多
Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is imp...Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.展开更多
This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality techniq...This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.展开更多
Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend...Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend and improve some known theorems, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. At the end of this paper, we give an example to illustrate the main results.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corres...This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).展开更多
The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the ex...The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions. Furthermore, some examples are included to illustrate the main theorems.展开更多
For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research i...For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.展开更多
In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in term of the coefficients and the graininess function. We illustrate our results with an example.
This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T w...This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.展开更多
Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation...Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.展开更多
In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillator...In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillatory solutions for general and which means that we allow oscillatory and . We give some examples to illustrate the obtained results.展开更多
We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by ut...We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.展开更多
By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral del...By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.展开更多
Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equa...Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In this paper,we discuss the oscillatory behavior of a class of nonlinear neutral perturbed dynamic equations on time scales.Some new oscillation criteria are obtained for such dynamic equations.Finally,an example tha...In this paper,we discuss the oscillatory behavior of a class of nonlinear neutral perturbed dynamic equations on time scales.Some new oscillation criteria are obtained for such dynamic equations.Finally,an example that dwells upon the sharp conditions of our result is also included.展开更多
We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- ...We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- and q are positive rd-continuous functions defined on the time scale 1F, and lirut→∞ τ(t) = ∞. The main aim of this paper is to establish some new sufficient conditions which guarantee that the equation has oscillatory solutions or the solutions tend to zero as →∞ τ. The main investigation depends on the Riccati substitution and the analysis of the associated Riccati dynamic inequality. Our results extend, complement and improve some previously obtained ones. In particular, the results provided substantial improvement for those obtained by Yu and Wang [J Comput Appl Math, 225 (2009), 531-540]. Some examples illustrating the main results are given.展开更多
基金supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003)the Science and Technology Project of Jiangxi Education Department(GJJ180354).
文摘In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
文摘By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.
文摘Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.
文摘This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.
文摘Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend and improve some known theorems, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. At the end of this paper, we give an example to illustrate the main results.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
文摘This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).
文摘The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions. Furthermore, some examples are included to illustrate the main theorems.
文摘For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.
文摘In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in term of the coefficients and the graininess function. We illustrate our results with an example.
基金supported in part by the NNSF of China(10971231 and 11271379)
文摘This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.
文摘Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.
文摘In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillatory solutions for general and which means that we allow oscillatory and . We give some examples to illustrate the obtained results.
文摘We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.
文摘By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.
基金Supported by National Natural Science Foundation of China (10671069)
文摘Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金Supported by the NNSF of China (11161049)the SF of the Zhangjiakou Bureau of Science and Technology (1112027B-1)
文摘In this paper,we discuss the oscillatory behavior of a class of nonlinear neutral perturbed dynamic equations on time scales.Some new oscillation criteria are obtained for such dynamic equations.Finally,an example that dwells upon the sharp conditions of our result is also included.
基金supported by King Saud University,Dean-ship of Scientific Research,College of Science Research Centre
文摘We consider the nonlinear functional dynamic equation (p(t)[(r(t)x^△(t))^△]γ)^△+q(t)f(x(τ(t))) =0, for t≥t0,on a time scale T, where γ〉 0 is the quotient of odd positive integers, p, r, τ- and q are positive rd-continuous functions defined on the time scale 1F, and lirut→∞ τ(t) = ∞. The main aim of this paper is to establish some new sufficient conditions which guarantee that the equation has oscillatory solutions or the solutions tend to zero as →∞ τ. The main investigation depends on the Riccati substitution and the analysis of the associated Riccati dynamic inequality. Our results extend, complement and improve some previously obtained ones. In particular, the results provided substantial improvement for those obtained by Yu and Wang [J Comput Appl Math, 225 (2009), 531-540]. Some examples illustrating the main results are given.