Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp struc...Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 91215302)"One-Three-Five" Strategic Planning (wind power prediction) of the Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS) (Grant No. Y267014601)the Strategic Project of Science and Technology of CAS (Grant No. XDA05040301)
文摘Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.