The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear...Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.展开更多
Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been develop...Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets.展开更多
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal...Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.展开更多
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in stat...A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.展开更多
For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself ...For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems.With the help of an ortho-normal triangularization method,which relies on numerically stable givens rotation,matrix inversion causes a computational burden,is reduced.Matrix computation possesses many excellent numerical properties such as singularity,symmetry,skew symmetry,and triangularity is achieved by using this algorithm.The proposed method is validated for the prediction of stationary and non-stationary Mackey–Glass Time Series,along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness.By the learning curves regarding mean square error(MSE)are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration(VLSI)applications with non-linear input data.Multiple experiments are carried out to validate the reliability,effectiveness,and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares(EKRLS)algorithm.展开更多
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time se...The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. ne results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable.展开更多
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i...Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.展开更多
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimizatio...Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.展开更多
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in...On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent.展开更多
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au...The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.展开更多
Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties...Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.展开更多
The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural...The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural networks and wavelet theories, the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given. Based on wavelet networks, a new method for parameter identification was suggested, which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series. Through pre-treatment and comparison of results before and after the treatment, several useful conclusions are reached: High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.展开更多
The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of paralle...The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.展开更多
Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is o...Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is of great significance for food safety network public opinion to predict emotional trends to do a good job in food safety network public opinion guidance. In this paper, the dynamic text representation method XLNet is used to generate word vectors with context-dependent dependencies to distribute the text information of food safety network public opinion. Then, the word vector is input into the CNN-BiLSTM network for local semantic feature and context semantic extraction. The attention mechanism is introduced to give different weights according to the importance of features, and the emotional tendency analysis is carried out. Based on sentiment analysis, sentiment value time series data is obtained, and a time series model is constructed to predict sentiment trends. The sentiment analysis model proposed in this paper can well classify the sentiment of food safety network public opinion, and the time series model has a good effect on the prediction of food safety network public opinion sentiment trend. .展开更多
Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data ana...Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing.展开更多
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l...The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output.展开更多
Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learnin...Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learning architecture,has been introduced in this work for enhanced wind-direction nowcasting.Developed by using three years of data from multiple stations in the complex terrain of an international airport,TELMo incorporates the horizontal u(east-west)and v(north-south)wind components to significantly reduce forecasting errors.On a day with high wind direction variability,TELMo achieved mean absolute error values of 5.66 for 2-min,10.59 for 10-min,and 14.79 for 20-min forecasts,processed within a swift 9-ms/step timeframe.Standard degree-based analysis,in comparison,yielded lower performance,emphasizing the effectiveness of the u and v components.In contrast,a Vanilla neural network,representing a shallow-learning approach,underperformed in all analyses,highlighting the superiority of deep learning methodologies in wind direction nowcasting.TELMo is an efficient model,capable of accurately forecasting wind direction for air traffic operations,with an error less than 20°in 97.49%of the predictions,aligning with recommended international thresholds.This model design enables its applicability across various geographical locations,making it a versatile tool in global aviation meteorology.展开更多
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C...In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.展开更多
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金funded by the Natural Science Foundation of Fujian Province,China (Grant No.2022J05291)Xiamen Scientific Research Funding for Overseas Chinese Scholars.
文摘Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.
文摘Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets.
基金Project (SGKJ[200301-16]) supported by the State Grid Cooperation of China
文摘Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61201452)
文摘A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.
基金funded by Prince Sultan University,Riyadh,Saudi Arabia。
文摘For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems.With the help of an ortho-normal triangularization method,which relies on numerically stable givens rotation,matrix inversion causes a computational burden,is reduced.Matrix computation possesses many excellent numerical properties such as singularity,symmetry,skew symmetry,and triangularity is achieved by using this algorithm.The proposed method is validated for the prediction of stationary and non-stationary Mackey–Glass Time Series,along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness.By the learning curves regarding mean square error(MSE)are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration(VLSI)applications with non-linear input data.Multiple experiments are carried out to validate the reliability,effectiveness,and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares(EKRLS)algorithm.
文摘The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. ne results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable.
文摘Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
基金Project supported by the State Key Program of the National Natural Science of China (Grant No. 60835004)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2009727)+1 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province of China (Grant No. 10KJB510004)the National Natural Science Foundation of China (Grant No. 61075028)
文摘On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent.
基金Supported by the National Natural Science Foundation of China under Grant No 60972106the China Postdoctoral Science Foundation under Grant No 2014M561053+1 种基金the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108the Hebei Province Natural Science Foundation under Grant No E2016202341
文摘The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.
基金supported by National Natural Science Foundation(NNSF)of China under Grant No.61371024Aviation Science Fund of China under Grant No.2013ZD53051+1 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC(cxy2013XGD14)
文摘Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.
文摘The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural networks and wavelet theories, the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given. Based on wavelet networks, a new method for parameter identification was suggested, which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series. Through pre-treatment and comparison of results before and after the treatment, several useful conclusions are reached: High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.
基金Supported by the National Natural Science Foundation of China (No. 60873235&60473099)the Science-Technology Development Key Project of Jilin Province of China (No. 20080318)the Program of New Century Excellent Talents in University of China (No. NCET-06-0300).
文摘The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure.
文摘Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is of great significance for food safety network public opinion to predict emotional trends to do a good job in food safety network public opinion guidance. In this paper, the dynamic text representation method XLNet is used to generate word vectors with context-dependent dependencies to distribute the text information of food safety network public opinion. Then, the word vector is input into the CNN-BiLSTM network for local semantic feature and context semantic extraction. The attention mechanism is introduced to give different weights according to the importance of features, and the emotional tendency analysis is carried out. Based on sentiment analysis, sentiment value time series data is obtained, and a time series model is constructed to predict sentiment trends. The sentiment analysis model proposed in this paper can well classify the sentiment of food safety network public opinion, and the time series model has a good effect on the prediction of food safety network public opinion sentiment trend. .
基金Project supported by the National Natural Science Foundation of China (Grant Nos. U20A20227,62076208, and 62076207)Chongqing Talent Plan “Contract System” Project (Grant No. CQYC20210302257)+3 种基金National Key Laboratory of Smart Vehicle Safety Technology Open Fund Project (Grant No. IVSTSKL-202309)the Chongqing Technology Innovation and Application Development Special Major Project (Grant No. CSTB2023TIAD-STX0020)College of Artificial Intelligence, Southwest UniversityState Key Laboratory of Intelligent Vehicle Safety Technology
文摘Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing.
文摘The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output.
基金Supported by Interactive Technologies Institute/Larsys/Fundaçao para a Ciência e a Tecnologia(10.54499/LA/P/0083/2020,10.54499/UIDP/50009/2020,and 10.54499/UIDB/50009/2020)Agência Regional para o Desenvolvimento da Investigação,Tecnologia e Inovação,and Portuguese Technical Engineering Order(OET).
文摘Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learning architecture,has been introduced in this work for enhanced wind-direction nowcasting.Developed by using three years of data from multiple stations in the complex terrain of an international airport,TELMo incorporates the horizontal u(east-west)and v(north-south)wind components to significantly reduce forecasting errors.On a day with high wind direction variability,TELMo achieved mean absolute error values of 5.66 for 2-min,10.59 for 10-min,and 14.79 for 20-min forecasts,processed within a swift 9-ms/step timeframe.Standard degree-based analysis,in comparison,yielded lower performance,emphasizing the effectiveness of the u and v components.In contrast,a Vanilla neural network,representing a shallow-learning approach,underperformed in all analyses,highlighting the superiority of deep learning methodologies in wind direction nowcasting.TELMo is an efficient model,capable of accurately forecasting wind direction for air traffic operations,with an error less than 20°in 97.49%of the predictions,aligning with recommended international thresholds.This model design enables its applicability across various geographical locations,making it a versatile tool in global aviation meteorology.
基金funded by Shaanxi Province Key Industrial Chain Project(2023-ZDLGY-24)Industrialization Project of Shaanxi Provincial Education Department(21JC018)+1 种基金Shaanxi Province Key Research and Development Program(2021ZDLGY13-02)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01).
文摘In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.