虽然花授粉算法对于求解优化问题十分有效,但也存在收敛性慢的问题。为了解决此问题,提出一种带有时变因子的差分进化花授粉算法(Differential Evolution Flower Pollination Algorithm with Time Variant Factor,TVDFPA)。对步长因子...虽然花授粉算法对于求解优化问题十分有效,但也存在收敛性慢的问题。为了解决此问题,提出一种带有时变因子的差分进化花授粉算法(Differential Evolution Flower Pollination Algorithm with Time Variant Factor,TVDFPA)。对步长因子进行改进,同时在迭代过程中加入差分进化的策略,通过种群杂交,提高算法的收敛速度和寻优能力。通过标准测试函数进行测试,仿真结果表明TVDFPA的收敛速度比原始花授粉算法、混沌和声的花授粉(HFPCHS)、模拟退火花授粉算法(SFPA)快,收敛精度也有较大提高。进而结合花授粉算法的特点,建立带有变参数的双适应值比较法来求解压力容器设计问题,实验结果表明改进之后的算法具有较好的求解性能。展开更多
A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising i...A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.展开更多
文摘虽然花授粉算法对于求解优化问题十分有效,但也存在收敛性慢的问题。为了解决此问题,提出一种带有时变因子的差分进化花授粉算法(Differential Evolution Flower Pollination Algorithm with Time Variant Factor,TVDFPA)。对步长因子进行改进,同时在迭代过程中加入差分进化的策略,通过种群杂交,提高算法的收敛速度和寻优能力。通过标准测试函数进行测试,仿真结果表明TVDFPA的收敛速度比原始花授粉算法、混沌和声的花授粉(HFPCHS)、模拟退火花授粉算法(SFPA)快,收敛精度也有较大提高。进而结合花授粉算法的特点,建立带有变参数的双适应值比较法来求解压力容器设计问题,实验结果表明改进之后的算法具有较好的求解性能。
文摘A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.