A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency ...A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency and amplitude of each signal component are estimated respectively, thus the signal component separation is achieved. By using prolate spheroidal sequence as basis functions to expand the time varying parameters of the AR model, the method turns the problem of linear time varying parameters estimation to a linear time invariant parameter estimation problem, then the parameters are estimated by a recursive algorithm. The computation of this method is simple, and no prior knowledge of the signals is needed. Simulation results demonstrate validity and excellent performance of this method.展开更多
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co...A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.展开更多
基金Supported by the Program for New Century Excellent Talents in University, Ministry of Education, China (Grant No. NCET-05-0803)
文摘A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency and amplitude of each signal component are estimated respectively, thus the signal component separation is achieved. By using prolate spheroidal sequence as basis functions to expand the time varying parameters of the AR model, the method turns the problem of linear time varying parameters estimation to a linear time invariant parameter estimation problem, then the parameters are estimated by a recursive algorithm. The computation of this method is simple, and no prior knowledge of the signals is needed. Simulation results demonstrate validity and excellent performance of this method.
基金The work was supported partially by NSF ECS-0555394 and NIH/NIBIB EB004287.
文摘A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.