Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenar...The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.展开更多
A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageo...A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.展开更多
An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation informatio...An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation information to propose an extended DOAmatrix(EDOAM) method. Subsequently, we obtain the autopaired angle and frequency estimates by the eigenvalues and the corresponding eigenvectors of the novel DOA matrix. Furthermore, the proposed method surpasses the DOA-matrix method which partly ignores the autocorrelation and cross-correlation information. Finally, the proposed method works well for both uniform and non-uniform linear arrays. The simulation consequences indicate the superiority of our proposed approach.展开更多
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari...The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
In this paper,a step approach method in the time domain is developed to calculate the radiated waves from an arbitrary obstacle pulsating with multiple frequencies.The computing scheme is based on the Boundary Integra...In this paper,a step approach method in the time domain is developed to calculate the radiated waves from an arbitrary obstacle pulsating with multiple frequencies.The computing scheme is based on the Boundary Integral Equation and derived in the time domain;thus,the time-harmonic Neumann boundary condition can be imposed.By the present method,the values of the initial conditions are set to zero,and the approach process is carried forward in a loop from the first time step to the last.At each time step,the radiated pressure on each element is updated.After several loops,the correct radiated pressures can be obtained.A sphere pulsating with a monopole frequency in an infinite acoustic domain is calculated first.This result is compared with the analytical solution,and both of them are in good agreement.Then,a complex-shaped radiator is taken as the studied case.The pulsating frequency of this case is multiple,and the waves propagate in half space.It is shown that the present method can treat multiple-frequency pulsation well,even when the radiator is a complex shape,and a robust convergence can be attained quickly.展开更多
Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this ...Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.展开更多
Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution...Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution, hydroelasticity methods applied in industry of marine and offshore energy grown up from two dimensional to three dimensional and now has analysis models of linear model in frequency domain and nonlinear model in time domain. In this paper, we present the three dimensional hydroelasticity theory model in frequency domain and time domain, show the difference in the approach, and discuss their applications in wave-structure interaction.展开更多
It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of ...It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of this novel detection technology by simulating the motion of carriers in gallium arsenide(GaAs) by the ensemble Monte Carlo method. At room temperature, for a direct-current(DC) voltage of 20 kV/cm applied to the semiconductor(GaAs) and sampling time o140 fs, the luminescence quenching phenomena induced by terahertz pulses with different center frequencies are studied The results show that the quenching efficiency is independent of the THz frequency when the frequency is in a range o0.1 THz–4 THz. However, when the frequency exceeds 4 THz, the efficiency decreases with the increase of frequency Therefore, the frequency response range is 0.1 THz–4 THz. Moreover, when the sampling time is changed to 100 fs the frequency response range is extended to be approximately 0.1 THz–5.6 THz. This study of the frequency-dependen characteristics of the luminescence response to the THz pulse can provide a theoretical basis for the exploration of THz detection technology.展开更多
A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Pe...A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
To achieve robust communication in high mobility scenarios,an iterative equalization algorithm based on alternating minimization(AM)is proposed for the orthogonal time frequency space(OTFS)system.The algorithm approxi...To achieve robust communication in high mobility scenarios,an iterative equalization algorithm based on alternating minimization(AM)is proposed for the orthogonal time frequency space(OTFS)system.The algorithm approximates the equalization problem to a convex function optimization problem in the real-valued domain and solves the problem iteratively using the AM algorithm.In the iterative process,the complexity of the proposed algorithm is reduced further based on the study of the cyclic structure and sparse property of the OTFS channel matrix in the delay-Doppler(DD)domain.The new method for OTFS is simulated and verified in a high-speed mobile scenario and the results show that the proposed equalization algorithm has excellent bit error rate performance with low complexity.展开更多
The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In part...The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.展开更多
To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a ...To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a frequency range of 100 Hz to 10 k Hz and an interval of 100 Hz are used to measure transmission characteristics of channels with lengths of 300 m, 800 m, 1300 m, and 1800 m. The correctness of the fitted channel characteristics by transmitting square wave, composite waves of different frequencies, and ASK modulation are verified. The results show that when the frequency of the signal is below 1500 Hz, the channel has very little effect on the signal. The signal compensated for amplitude and phase at the receiver is not as good as the uncompensated signal.Alternatively, when the signal frequency is above 1500 Hz, the channel distorts the signal. The quality of signal compensated for amplitude and phase at receiver is better than that of the uncompensated signal. Thus, we can select the appropriate frequency for XCTD system and the appropriate way to process the received signals. Signals below1500 Hz can be directly used at the receiving end. Signals above 1500 Hz are used after amplitude and phase compensation at the receiving end.展开更多
Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency....Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.展开更多
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
基金National Natural Science Foundation of China under Grant No.51378107the Fundamental Research Funds for the Central Universities and Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.KYLX-0158the National Natural Science Foundation under Grant No.CMMI-1227962
文摘The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
文摘A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.
基金supported by the National Natural Science Foundation of China (61971217,61971218,61631020)Jiangsu Natural Science Foundation (BK20200444)+1 种基金Jiangsu Key Research and Development Project (BE2020101)the Fund of Sonar Technology Key Laboratory。
文摘An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation information to propose an extended DOAmatrix(EDOAM) method. Subsequently, we obtain the autopaired angle and frequency estimates by the eigenvalues and the corresponding eigenvectors of the novel DOA matrix. Furthermore, the proposed method surpasses the DOA-matrix method which partly ignores the autocorrelation and cross-correlation information. Finally, the proposed method works well for both uniform and non-uniform linear arrays. The simulation consequences indicate the superiority of our proposed approach.
基金National Science Foundation Grant NSF CMS CAREER Under Grant No.9996290NSF CMMI Under Grant No.0830391
文摘The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
文摘In this paper,a step approach method in the time domain is developed to calculate the radiated waves from an arbitrary obstacle pulsating with multiple frequencies.The computing scheme is based on the Boundary Integral Equation and derived in the time domain;thus,the time-harmonic Neumann boundary condition can be imposed.By the present method,the values of the initial conditions are set to zero,and the approach process is carried forward in a loop from the first time step to the last.At each time step,the radiated pressure on each element is updated.After several loops,the correct radiated pressures can be obtained.A sphere pulsating with a monopole frequency in an infinite acoustic domain is calculated first.This result is compared with the analytical solution,and both of them are in good agreement.Then,a complex-shaped radiator is taken as the studied case.The pulsating frequency of this case is multiple,and the waves propagate in half space.It is shown that the present method can treat multiple-frequency pulsation well,even when the radiator is a complex shape,and a robust convergence can be attained quickly.
文摘Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.
文摘Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution, hydroelasticity methods applied in industry of marine and offshore energy grown up from two dimensional to three dimensional and now has analysis models of linear model in frequency domain and nonlinear model in time domain. In this paper, we present the three dimensional hydroelasticity theory model in frequency domain and time domain, show the difference in the approach, and discuss their applications in wave-structure interaction.
基金supported by the Wuhan Applied Basic Research Project,China(Grant No.20140101010009)the National Natural Science Foundation of China(Grant Nos.61405063,61475054,11574105,and 61177095)+1 种基金the Hubei Science and Technology Agency Project,China(Grant No.2015BCE052)the Fundamental Research Funds for the Central Universities,China(Grant No.2017KFYXJJ029)
文摘It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of this novel detection technology by simulating the motion of carriers in gallium arsenide(GaAs) by the ensemble Monte Carlo method. At room temperature, for a direct-current(DC) voltage of 20 kV/cm applied to the semiconductor(GaAs) and sampling time o140 fs, the luminescence quenching phenomena induced by terahertz pulses with different center frequencies are studied The results show that the quenching efficiency is independent of the THz frequency when the frequency is in a range o0.1 THz–4 THz. However, when the frequency exceeds 4 THz, the efficiency decreases with the increase of frequency Therefore, the frequency response range is 0.1 THz–4 THz. Moreover, when the sampling time is changed to 100 fs the frequency response range is extended to be approximately 0.1 THz–5.6 THz. This study of the frequency-dependen characteristics of the luminescence response to the THz pulse can provide a theoretical basis for the exploration of THz detection technology.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project supported by China Postdoctoral Science Foundation (20100481488), Key Fund Project of Advanced Research of the Weapon Equipment (9140A33040512JB3401).
基金supported by the 54th Research Institute of China E lectronics Technology Group Corporation(SKX212010007)。
文摘To achieve robust communication in high mobility scenarios,an iterative equalization algorithm based on alternating minimization(AM)is proposed for the orthogonal time frequency space(OTFS)system.The algorithm approximates the equalization problem to a convex function optimization problem in the real-valued domain and solves the problem iteratively using the AM algorithm.In the iterative process,the complexity of the proposed algorithm is reduced further based on the study of the cyclic structure and sparse property of the OTFS channel matrix in the delay-Doppler(DD)domain.The new method for OTFS is simulated and verified in a high-speed mobile scenario and the results show that the proposed equalization algorithm has excellent bit error rate performance with low complexity.
基金supported by the State Scholarship Fund of the China Scholarship Council (Grant 2009629129)
文摘The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC1400400)
文摘To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a frequency range of 100 Hz to 10 k Hz and an interval of 100 Hz are used to measure transmission characteristics of channels with lengths of 300 m, 800 m, 1300 m, and 1800 m. The correctness of the fitted channel characteristics by transmitting square wave, composite waves of different frequencies, and ASK modulation are verified. The results show that when the frequency of the signal is below 1500 Hz, the channel has very little effect on the signal. The signal compensated for amplitude and phase at the receiver is not as good as the uncompensated signal.Alternatively, when the signal frequency is above 1500 Hz, the channel distorts the signal. The quality of signal compensated for amplitude and phase at receiver is better than that of the uncompensated signal. Thus, we can select the appropriate frequency for XCTD system and the appropriate way to process the received signals. Signals below1500 Hz can be directly used at the receiving end. Signals above 1500 Hz are used after amplitude and phase compensation at the receiving end.
基金supported by National Natural Science Foundation of China(No.51577124,No.51877148)National Key Research and Development Program of China(SQ2023YFE0198100)。
文摘Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.