A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f...A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this展开更多
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose freq...In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose frequencies have overlapped regions in Fourier transform domain and even have crossed points in time-frequency distribution (TFD) so that the proposed TVBF seems like a “soft-cutter” that cuts the frequency domain to snaky slices with rational physical sense. First, the Hilbert transform based decomposition is analyzed for the analysis of nonstationary signals. Based on the above analysis, a hypothesis under a certain condition that AM-FM components can be separated successfully based on Hilbert transform and the assisted signal is developed, which is supported by representative experiments and theoretical performance analyses on a error bound that is shown to be proportional to the product of frequency width and noise variance. The assisted signals are derived from the refined time-frequency distributions via image fusion and least squares optimization. Experiments on man-made and real-life data verify the efficiency of the proposed method and demonstrate the advantages over the other main methods.展开更多
Statistical Signal Transmission(SST)is a technique based on orthogonal frequency-division multiplexing(OFDM)and adopts cyclostationary features,which can transmit extra information without additional bandwidth.However...Statistical Signal Transmission(SST)is a technique based on orthogonal frequency-division multiplexing(OFDM)and adopts cyclostationary features,which can transmit extra information without additional bandwidth.However,the more complicated environment in 5G communication systems,especially the fast time-varying scenarios,will dramatically degrade the performance of the SST.In this paper,we propose a fragmental weight-conservation combining(FWCC)scheme for SST,to overcome its performance degradation under fast time-varying channels.The proposed FWCC scheme consists of three phases:1、incise the received OFDM stream into pieces;2、endue different weights for fine and contaminated pieces,respectively;3、combine cyclic autocorrelation function energies of all the pieces;and 4、compute the final feature and demodulate data of SST.Through these procedures above,the detection accuracy of SST will be theoretically refined under fast time-varying channels.Such an inference is confirmed through numerical results in this paper.It is demonstrated that the BER performance of proposed scheme outperforms that of the original scheme both in ideal channel estimation conditions and in imperfect channel estimation conditions.In addition,we also find the experiential optimal weight distribution strategy for the proposed FWCC scheme,which facilitates practical applications.展开更多
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc...Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.展开更多
Two approaches to the design of time-varying cascaded filters used in radar clutter rejection are presented. In the first approach, by fitting the cascaded filter to the noncascaded filter, the time-varying cascaded f...Two approaches to the design of time-varying cascaded filters used in radar clutter rejection are presented. In the first approach, by fitting the cascaded filter to the noncascaded filter, the time-varying cascaded filter can be designed, which makes it possible that the time-varying cascaded filter behaves just like an optimum clutter filter. The second approach can be used to design the second-stage filter in a time-varying cascaded one by setting zeros in its equivalent overall frequency response. It has been shown that it is difficult to express the frequency response of the second-stage filter in the time-varying cascaded one, however, it is convenient to be involved in the overall response.展开更多
This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detec...This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.展开更多
文摘A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
文摘In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose frequencies have overlapped regions in Fourier transform domain and even have crossed points in time-frequency distribution (TFD) so that the proposed TVBF seems like a “soft-cutter” that cuts the frequency domain to snaky slices with rational physical sense. First, the Hilbert transform based decomposition is analyzed for the analysis of nonstationary signals. Based on the above analysis, a hypothesis under a certain condition that AM-FM components can be separated successfully based on Hilbert transform and the assisted signal is developed, which is supported by representative experiments and theoretical performance analyses on a error bound that is shown to be proportional to the product of frequency width and noise variance. The assisted signals are derived from the refined time-frequency distributions via image fusion and least squares optimization. Experiments on man-made and real-life data verify the efficiency of the proposed method and demonstrate the advantages over the other main methods.
基金supported by the National Natural Science Foundation of China (Nos. 61801461, 61801460)the Strategical Leadership Project of Chinese Academy of Sciences (grant No. XDC02070800)the Shanghai Municipality of Science and Technology Commission Project (Nos. 18XD1404100, 17QA1403800)
文摘Statistical Signal Transmission(SST)is a technique based on orthogonal frequency-division multiplexing(OFDM)and adopts cyclostationary features,which can transmit extra information without additional bandwidth.However,the more complicated environment in 5G communication systems,especially the fast time-varying scenarios,will dramatically degrade the performance of the SST.In this paper,we propose a fragmental weight-conservation combining(FWCC)scheme for SST,to overcome its performance degradation under fast time-varying channels.The proposed FWCC scheme consists of three phases:1、incise the received OFDM stream into pieces;2、endue different weights for fine and contaminated pieces,respectively;3、combine cyclic autocorrelation function energies of all the pieces;and 4、compute the final feature and demodulate data of SST.Through these procedures above,the detection accuracy of SST will be theoretically refined under fast time-varying channels.Such an inference is confirmed through numerical results in this paper.It is demonstrated that the BER performance of proposed scheme outperforms that of the original scheme both in ideal channel estimation conditions and in imperfect channel estimation conditions.In addition,we also find the experiential optimal weight distribution strategy for the proposed FWCC scheme,which facilitates practical applications.
基金supported by the National Natural Science Foundation of China (No.52075349)the National Natural Science Foundation of China (No.62303335)+1 种基金the Postdoctoral Researcher Program of China (No.GZC20231779)the Natural Science Foundation of Sichuan Province (No.2022NSFSC1942).
文摘Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.
文摘Two approaches to the design of time-varying cascaded filters used in radar clutter rejection are presented. In the first approach, by fitting the cascaded filter to the noncascaded filter, the time-varying cascaded filter can be designed, which makes it possible that the time-varying cascaded filter behaves just like an optimum clutter filter. The second approach can be used to design the second-stage filter in a time-varying cascaded one by setting zeros in its equivalent overall frequency response. It has been shown that it is difficult to express the frequency response of the second-stage filter in the time-varying cascaded one, however, it is convenient to be involved in the overall response.
基金National Natural Science Foundations of China(Nos.61203147,61374047,61203126,60973095)
文摘This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.