There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This ...There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.展开更多
Recently advancements in deep learning models have significantly facilitated the development of sequential recommender systems(SRS).However,the current deep model structures are limited in their ability to learn high-...Recently advancements in deep learning models have significantly facilitated the development of sequential recommender systems(SRS).However,the current deep model structures are limited in their ability to learn high-quality embeddings with insufficient data.Meanwhile,highly skewed long-tail distribution is very common in recommender systems.Therefore,in this paper,we focus on enhancing the representation of tail items to improve sequential recommendation performance.Through empirical studies on benchmarks,we surprisingly observe that both the ranking performance and training procedure are greatly hindered by the poorly optimized tail item embeddings.To address this issue,we propose a sequential recommendation framework named TailRec that enables contextual information of tail item well-leveraged and greatly improves its corresponding representation.Given the characteristics of the sequential recommendation task,the surrounding interaction records of each tail item are regarded as contextual information without leveraging any additional side information.This approach allows for the mining of contextual information from cross-sequence behaviors to boost the performance of sequential recommendations.Such a light contextual filtering component is plug-and-play for a series of SRS models.To verify the effectiveness of the proposed TailRec,we conduct extensive experiments over several popular benchmark recommenders.The experimental results demonstrate that TailRec can greatly improve the recommendation results and speed up the training process.The codes of our methods have been available.展开更多
Recommendation algorithms regard user-item interaction as a sequence to capture the user’s short-term preferences,but conventional algorithms cannot capture information of constantly-changing user interest in complex...Recommendation algorithms regard user-item interaction as a sequence to capture the user’s short-term preferences,but conventional algorithms cannot capture information of constantly-changing user interest in complex contexts.In these years,combining the knowledge graphwith sequential recommendation has gained momentum.The advantages of knowledge graph-based recommendation systems are that more semantic associations can improve the accuracy of recommendations,rich association facts can increase the diversity of recommendations,and complex relational paths can hence the interpretability of recommendations.But the information in the knowledge graph,such as entities and relations,often fails to be fully utilized and high-order connectivity is unattainable in graph modelling in knowledge graph-based sequential recommender systems.To address the above problems,a knowledge graph-based sequential recommendation algorithm that combines the gated recurrent unit and the graph neural network(KGSRGG)is proposed in the present work.Specifically,entity disambiguation in the knowledge graph is performed on the preprocessing layer;on the embedding layer,the TransR embedding technique is employed to process the user information,item information and the entities and relations in the knowledge graph;on the aggregation layer,the information is aggregated by graph convolutional neural networks and residual connections;and at last,on the sequence layer,a bi-directional gated recurrent unit(Bi-GRU)is utilized to model the user’s sequential preferences.The research results showed that this newalgorithm performed better than existing sequential recommendation algorithms on the MovieLens-1M and Book-Crossing datasets,as measured by five evaluation indicators.展开更多
随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标...随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation, MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。展开更多
Transfer learning has attracted a large amount of interest and research in last decades, and some effort has been made to build more precise recommendation systems. Most previous transfer recommendation systems assume...Transfer learning has attracted a large amount of interest and research in last decades, and some effort has been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, almost all existing transfer learning work does not consider the characteristics of sequential data. In this paper, we study the new cross-domain recommendation scenario by mining novelty-seeking trait. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior, which has a profound business impact on online recommendation. Previous work performed on only one single target domain may not fully characterize users' novelty-seeking trait well due to the data scarcity and sparsity, leading to the poor recommendation performance. Along this line, we propose a new cross-domain novelty-seeking trait mining model (CDNST for short) to improve the sequential recommendation performance by transferring the knowledge from auxiliary source domain. We conduct systematic experiments on three domain datasets crawled from Douban to demonstrate the effectiveness of our proposed model. Moreover, we analyze the directed influence of the temporal property at the source and target domains in detail.展开更多
1 Introduction Nowadays,recommender systems are widely used because of the information overload problem on the Internet.There are a variety of feedback in recommender systems,such as explicit feedback,implicit feedbac...1 Introduction Nowadays,recommender systems are widely used because of the information overload problem on the Internet.There are a variety of feedback in recommender systems,such as explicit feedback,implicit feedback,sequential feedback,etc.Among them,modeling of heterogeneous sequential feedback,which contains not only different types of feedback such as examinations and purchases but also the sequential information,is an emerging and important problem receiving more and more attention.Heterogeneous sequential feedback is relatively easy to be collected in a deployed system and is also able to provide more information than the homogeneous feedback,which is thus expected to be helpful in improving the recommendation accuracy.展开更多
The sequential recommendation is a compelling technology for predicting users’next interaction via their historical behaviors.Prior studies have proposed various methods to optimize the recommendation accuracy on dif...The sequential recommendation is a compelling technology for predicting users’next interaction via their historical behaviors.Prior studies have proposed various methods to optimize the recommendation accuracy on different datasets but have not yet explored the intrinsic predictability of sequential recommendation.To this end,we consider applying the popular predictability theory of human movement behavior to this recommendation context.Still,it would incur serious bias in the next moment measurement of the candidate set size,resulting in inaccurate predictability.Therefore,determining the size of the candidate set is the key to quantifying the predictability of sequential recommendations.Here,different from the traditional approach that utilizes topological constraints,we first propose a method to learn inter-item associations from historical behaviors to restrict the size via logical constraints.Then,we extend it by 10 excellent recommendation algorithms to learn deeper associations between user behavior.Our two methods show significant improvement over existing methods in scenarios that deal with few repeated behaviors and large sets of behaviors.Finally,a prediction rate between 64%and 80%has been obtained by testing on five classical datasets in three domains of the recommender system.This provides a guideline to optimize the recommendation algorithm for a given dataset.展开更多
Live streaming has grown rapidly in recent years, attracting increasingly more participation. As the number of online anchors is large, it is difficult for viewers to find the anchors they are interested in. Therefore...Live streaming has grown rapidly in recent years, attracting increasingly more participation. As the number of online anchors is large, it is difficult for viewers to find the anchors they are interested in. Therefore, a personalized recommendation system is important for live streaming platforms. On live streaming platforms, the viewer’s and anchor’s preferences are dynamically changing over time. How to capture the user’s preference change is extensively studied in the literature, but how to model the viewer’s and anchor’s preference changes and how to learn their representations based on their preference matching are less studied. Taking these issues into consideration, in this paper, we propose a deep sequential model for live streaming recommendation. We develop a component named the multi-head related-unit in the model to capture the preference matching between anchor and viewer and extract related features for their representations. To evaluate the performance of our proposed model, we conduct experiments on real datasets, and the results show that our proposed model outperforms state-of-the-art recommendation models.展开更多
Building an effective sequential recommendation system is still a challenging task due to limited interactions among users and items.Recent work has shown the effectiveness of incorporating textual or visual informati...Building an effective sequential recommendation system is still a challenging task due to limited interactions among users and items.Recent work has shown the effectiveness of incorporating textual or visual information into sequential recommendation to alleviate the data sparse problem.The data sparse problem now is attracting a lot of attention in both industry and academic community.However,considering interactions among modalities on a sequential scenario is an interesting yet challenging task because of multimodal heterogeneity.In this paper,we introduce a novel recommendation approach of considering both textual and visual information,namely Multimodal Interactive Network(MIN).The advantage of MIN lies in designing a learning framework to leverage the interactions among modalities from both the item level and the sequence level for building an efficient system.Firstly,an item-wise interactive layer based on the encoder-decoder mechanism is utilized to model the item-level interactions among modalities to select the informative information.Secondly,a sequence interactive layer based on the attention strategy is designed to capture the sequence-level preference of each modality.MIN seamlessly incorporates interactions among modalities from both the item level and the sequence level for sequential recommendation.It is the first time that interactions in each modality have been explicitly discussed and utilized in sequential recommenders.Experimental results on four real-world datasets show that our approach can significantly outperform all the baselines in sequential recommendation task.展开更多
文摘There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.
基金the National Key R&D Program of China(No.2021YFF0901003)。
文摘Recently advancements in deep learning models have significantly facilitated the development of sequential recommender systems(SRS).However,the current deep model structures are limited in their ability to learn high-quality embeddings with insufficient data.Meanwhile,highly skewed long-tail distribution is very common in recommender systems.Therefore,in this paper,we focus on enhancing the representation of tail items to improve sequential recommendation performance.Through empirical studies on benchmarks,we surprisingly observe that both the ranking performance and training procedure are greatly hindered by the poorly optimized tail item embeddings.To address this issue,we propose a sequential recommendation framework named TailRec that enables contextual information of tail item well-leveraged and greatly improves its corresponding representation.Given the characteristics of the sequential recommendation task,the surrounding interaction records of each tail item are regarded as contextual information without leveraging any additional side information.This approach allows for the mining of contextual information from cross-sequence behaviors to boost the performance of sequential recommendations.Such a light contextual filtering component is plug-and-play for a series of SRS models.To verify the effectiveness of the proposed TailRec,we conduct extensive experiments over several popular benchmark recommenders.The experimental results demonstrate that TailRec can greatly improve the recommendation results and speed up the training process.The codes of our methods have been available.
文摘Recommendation algorithms regard user-item interaction as a sequence to capture the user’s short-term preferences,but conventional algorithms cannot capture information of constantly-changing user interest in complex contexts.In these years,combining the knowledge graphwith sequential recommendation has gained momentum.The advantages of knowledge graph-based recommendation systems are that more semantic associations can improve the accuracy of recommendations,rich association facts can increase the diversity of recommendations,and complex relational paths can hence the interpretability of recommendations.But the information in the knowledge graph,such as entities and relations,often fails to be fully utilized and high-order connectivity is unattainable in graph modelling in knowledge graph-based sequential recommender systems.To address the above problems,a knowledge graph-based sequential recommendation algorithm that combines the gated recurrent unit and the graph neural network(KGSRGG)is proposed in the present work.Specifically,entity disambiguation in the knowledge graph is performed on the preprocessing layer;on the embedding layer,the TransR embedding technique is employed to process the user information,item information and the entities and relations in the knowledge graph;on the aggregation layer,the information is aggregated by graph convolutional neural networks and residual connections;and at last,on the sequence layer,a bi-directional gated recurrent unit(Bi-GRU)is utilized to model the user’s sequential preferences.The research results showed that this newalgorithm performed better than existing sequential recommendation algorithms on the MovieLens-1M and Book-Crossing datasets,as measured by five evaluation indicators.
文摘随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation, MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。
基金The work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1004300the National Natural Science Foundation of China under Grant Nos. U1836206, U1811461, 61773361the Project of Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No. 2017146.
文摘Transfer learning has attracted a large amount of interest and research in last decades, and some effort has been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, almost all existing transfer learning work does not consider the characteristics of sequential data. In this paper, we study the new cross-domain recommendation scenario by mining novelty-seeking trait. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior, which has a profound business impact on online recommendation. Previous work performed on only one single target domain may not fully characterize users' novelty-seeking trait well due to the data scarcity and sparsity, leading to the poor recommendation performance. Along this line, we propose a new cross-domain novelty-seeking trait mining model (CDNST for short) to improve the sequential recommendation performance by transferring the knowledge from auxiliary source domain. We conduct systematic experiments on three domain datasets crawled from Douban to demonstrate the effectiveness of our proposed model. Moreover, we analyze the directed influence of the temporal property at the source and target domains in detail.
基金We thank the support of National Natural Science Foundation of China(Grant Nos.62172283 and 61836005).
文摘1 Introduction Nowadays,recommender systems are widely used because of the information overload problem on the Internet.There are a variety of feedback in recommender systems,such as explicit feedback,implicit feedback,sequential feedback,etc.Among them,modeling of heterogeneous sequential feedback,which contains not only different types of feedback such as examinations and purchases but also the sequential information,is an emerging and important problem receiving more and more attention.Heterogeneous sequential feedback is relatively easy to be collected in a deployed system and is also able to provide more information than the homogeneous feedback,which is thus expected to be helpful in improving the recommendation accuracy.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61960206008,62002294)the National Science Fund for Distinguished Young Scholars(61725205).
文摘The sequential recommendation is a compelling technology for predicting users’next interaction via their historical behaviors.Prior studies have proposed various methods to optimize the recommendation accuracy on different datasets but have not yet explored the intrinsic predictability of sequential recommendation.To this end,we consider applying the popular predictability theory of human movement behavior to this recommendation context.Still,it would incur serious bias in the next moment measurement of the candidate set size,resulting in inaccurate predictability.Therefore,determining the size of the candidate set is the key to quantifying the predictability of sequential recommendations.Here,different from the traditional approach that utilizes topological constraints,we first propose a method to learn inter-item associations from historical behaviors to restrict the size via logical constraints.Then,we extend it by 10 excellent recommendation algorithms to learn deeper associations between user behavior.Our two methods show significant improvement over existing methods in scenarios that deal with few repeated behaviors and large sets of behaviors.Finally,a prediction rate between 64%and 80%has been obtained by testing on five classical datasets in three domains of the recommender system.This provides a guideline to optimize the recommendation algorithm for a given dataset.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.71771131 and U1711262)
文摘Live streaming has grown rapidly in recent years, attracting increasingly more participation. As the number of online anchors is large, it is difficult for viewers to find the anchors they are interested in. Therefore, a personalized recommendation system is important for live streaming platforms. On live streaming platforms, the viewer’s and anchor’s preferences are dynamically changing over time. How to capture the user’s preference change is extensively studied in the literature, but how to model the viewer’s and anchor’s preference changes and how to learn their representations based on their preference matching are less studied. Taking these issues into consideration, in this paper, we propose a deep sequential model for live streaming recommendation. We develop a component named the multi-head related-unit in the model to capture the preference matching between anchor and viewer and extract related features for their representations. To evaluate the performance of our proposed model, we conduct experiments on real datasets, and the results show that our proposed model outperforms state-of-the-art recommendation models.
基金supported by the National Natural Science Foundation of China under Grant Nos.61802029,U1536121,and 61370195.
文摘Building an effective sequential recommendation system is still a challenging task due to limited interactions among users and items.Recent work has shown the effectiveness of incorporating textual or visual information into sequential recommendation to alleviate the data sparse problem.The data sparse problem now is attracting a lot of attention in both industry and academic community.However,considering interactions among modalities on a sequential scenario is an interesting yet challenging task because of multimodal heterogeneity.In this paper,we introduce a novel recommendation approach of considering both textual and visual information,namely Multimodal Interactive Network(MIN).The advantage of MIN lies in designing a learning framework to leverage the interactions among modalities from both the item level and the sequence level for building an efficient system.Firstly,an item-wise interactive layer based on the encoder-decoder mechanism is utilized to model the item-level interactions among modalities to select the informative information.Secondly,a sequence interactive layer based on the attention strategy is designed to capture the sequence-level preference of each modality.MIN seamlessly incorporates interactions among modalities from both the item level and the sequence level for sequential recommendation.It is the first time that interactions in each modality have been explicitly discussed and utilized in sequential recommenders.Experimental results on four real-world datasets show that our approach can significantly outperform all the baselines in sequential recommendation task.