This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
We report a case of a 12-year-old female with closed and open comedo without inflammatory lesions at the first visit. She had been treated with topical adapalene once daily, and closed and open comedo subsided without...We report a case of a 12-year-old female with closed and open comedo without inflammatory lesions at the first visit. She had been treated with topical adapalene once daily, and closed and open comedo subsided without inflammatory lesions one month after the treatment without any side effects induced by adapalen. The recurrence of comedo had not been observed afterwards. In the Japanese Dermatological Association (JDA) guidelines for the treatment of acne vulgaris, comedonal phase has not been stated. Then we propose the tentative new terminology of a comedonal phase and emphasize its importance in the early initial treatment for comedo to prevent the development of the acute inflammatory phase such as red papules and pustules and formation of acne scars.展开更多
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta...Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.展开更多
An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mech...An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastableη′phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transfor-mation was also demonstrated by first-principles calculations.展开更多
Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi stee...Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.展开更多
The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differentia...The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC),hardness and tensile tests.The results show that Mg(Zn,Cu,Al)2phases gradually dissolve into the matrix,yet the size andmorphology of Al7Cu2Fe phase exhibit no change with the increase of the solution treatment temperature and time due to its highmelting point.When the solution treatment temperature and time continue to increase,the formation of coarse black Mg2Si particlesoccurs.Compared to the as-cast alloy,the microhardness,tensile strength,and elongation of the sample under solution heat treatmentat460°C for5h are increased by55.1%,40.9%and109.1%,respectively.This is because the eutectic Mg(Zn,Cu,Al)2phases almostcompletely dissolve and basically no coarse black Mg2Si particles are formed.展开更多
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var...The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.展开更多
In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and tempera...In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and temperature, the different structures were obtained from the initial near-γ (NG) microstructures by heat treatment in the α+γ field. The results show that the microstructures of samples after furnace cooling (FC) consist primarily of equiaxed γ and α 2 grains, with a few grains containing lamellae. Duplex microstructures consist mainly of γ grains and lamellar colonies were obtained in the quenching into another furnace at 900°C (QFC) samples. However, further increasing of the cooling rate to air cooling (AC) induces the transformation of α→α_2 and results in a microstructure with equiaxed γ and α_2 grains, and no lamellar colonies are found.展开更多
The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly c...The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly consisted ofα-Mg,W(Mg_(3)Zn_(3)Y_(2))phase,and the long period stacking ordered(LPSO)(Mg_(12)ZnY)phase.After solid solution treatment,most of the W phase disappears gradually with increasing solution treatment time,with only a small amount of W phase distributed as particle.The LPSO phase slightly dissolved into substrate,and its morphology transitions from blocky shape to rod shape.Solid solution treatment of Mg_(95.5)Zn_(1.5)Y_(3) exhibits excellent corrosion resistance,because the Y and Zn atoms became enriched in the matrix and the changed morphologies of the LPSO and W phases were modified through heat treatment.The alloy created with solid solution treatment at 520 ℃ for 10 hours exhibits corrosion potential of−1.419 V,suggesting a significant improvement in corrosion performance.展开更多
The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that...The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.展开更多
In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standa...In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.展开更多
To clarify phase transformation evolution of Nb-doped Ni-Mn-Ga bulk alloys after aging and ball milling, the microstructure and phase transformation of the aged and ball-milled dual-phase Nb-doped Ni-Mn-Ga alloys were...To clarify phase transformation evolution of Nb-doped Ni-Mn-Ga bulk alloys after aging and ball milling, the microstructure and phase transformation of the aged and ball-milled dual-phase Nb-doped Ni-Mn-Ga alloys were investigated by SEM, EDS, XRD, DSC and susceptibility measurements. The as-cast alloys were mainly composed of the second phase with layer-shape and presented a reduced martensitic transformation with increasing the second phase content. The second phase transformed from layer-shape to dense bar-shape and the martensitic transformation was enhanced after being quenched at 1173 K. After aging at 673 and 873 K, the 3% Nb alloy with less second phase exhibited a single-step phase transformation, whereas the 6% Nb and 9% Nb alloys with more second phase exhibited a two-step martensitic transformation and Curie transition. The martensitic transformation and Curie transition of the as-milled dual-phase particles disappeared and were retrieved after annealing at 1073 K due to the recovery of high ordered structure of the matrix.展开更多
The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP process...The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP processed for six passes at 320°C.It indicated that the ECAP could significantly promote the process of solid solution in Mg-Zn alloy.The results showed that complete dissolution of the intermetallic phase improved the corrosion resistance of Mg-6Zn alloy in 0.9%NaCl solution by turning the corrosion behavior into uniform corrosion and increased the hardness in combination with its smaller grain size.展开更多
The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. ...The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. The results exhibit that aging temperatures influence the distribution of α2 phase precipitated and cause the changes in growth speed of α2 phase. For various aging temperatures, the time to finish precipitation of α2 phase is different. The facts that various distribution characteristics and growth speed of α2 ordered phase are caused by changed aging condition imply optimal selection and control for precipitation of α2 ordered phase reachable. Some discussions on adoptable aging steps are presented.展开更多
The volume fraction and morphology of the TCP-phase formed in two kinds of Ni- Mo-Cr-Re superalloys under different heat treatment conditions were investigated in this paper. In Re-5% alloy, with increasing of the hea...The volume fraction and morphology of the TCP-phase formed in two kinds of Ni- Mo-Cr-Re superalloys under different heat treatment conditions were investigated in this paper. In Re-5% alloy, with increasing of the heat treatment temperature and prolonging the holding time, the volume fraction of TCP-phase decreased and the TCP-phase size increased. At relatively lower temperature, the TCP-phase prefers to present in the dendrite cores. In Re-10% alloy, the volume fraction and size have the same change tendency as that of in Re-5% alloy, but the morphology will change from needle-like and block-like to sphere when the temperature increases. The TCP-phases formed in these two Ni-Mo-Cr-Re alloys are σ and P phase.展开更多
The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor...The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor powder depend on heat treatment atmosphere. Phase assemblage of(Bi,Pb)-2212, AEC, CuO, and small Bi-2201 can be obtained by heat-treated in N2-0.1%O_2 atmosphere. For precursor powder, there is sufficient reaction process at 770℃, and the dimension of Bi-2212 phase increases rapidly with the increase of heat treatment temperature and time. The dimension of AEC phase also increases by extending heat treatment time. As a balance among phase assemblage, dimension of particle and adequate reaction, a reasonable precursor powder can be obtained by heat-treated at 770℃ for 12 h–16 h in N2-0.1%O_2 atmosphere. Critical current of 37-filament Bi-2223 tape is about 120 A, which confirms that these heat treatment parameters are reasonable.展开更多
Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spec...Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.展开更多
In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results s...In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.展开更多
There are many Zr particles in as-cast NiAl-33.5Cr-0.5Zr (at. pct) alloy, which usually exist at the edge of eutectic of beta -NiAl and cx-Cr. After air and furnace cooling solution treatments, far 1400 degreesC, 2 h ...There are many Zr particles in as-cast NiAl-33.5Cr-0.5Zr (at. pct) alloy, which usually exist at the edge of eutectic of beta -NiAl and cx-Cr. After air and furnace cooling solution treatments, far 1400 degreesC, 2 h and 1450 degreesC, 1 h, pure Zr phase remains in the furnace cooling (F.C.) state alloys and Ni2AlZr phase forms in the air cooling (A.C.) state alloys. During solution treatment at 1450 degreesC, bulk and 'fish bone' shape Zr-rich phases form respectively in F.C. and A.C. state alloys. A 'river' shape Ni2AlZr phase forms after 1450 C for 1h F.C. and 850 degreesC for 12 h, F.C.. The alloy has less pure Zr and Ni2AlZr phase after 1400 degreesC with both air and furnace cooling followed by 850 C and 950 C for 12 h, F.C. aging treatments, respectively. Additionally, there is a ternary eutectic of NiAlZr and a phase enriched Zr and Cr forms at the edge of the eutectic of beta -NiAl and alpha -Cr in the alloy treated at 1400 degreesC, 2 h, F.C. and 950 degreesC, 12 h, F.C.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
文摘We report a case of a 12-year-old female with closed and open comedo without inflammatory lesions at the first visit. She had been treated with topical adapalene once daily, and closed and open comedo subsided without inflammatory lesions one month after the treatment without any side effects induced by adapalen. The recurrence of comedo had not been observed afterwards. In the Japanese Dermatological Association (JDA) guidelines for the treatment of acne vulgaris, comedonal phase has not been stated. Then we propose the tentative new terminology of a comedonal phase and emphasize its importance in the early initial treatment for comedo to prevent the development of the acute inflammatory phase such as red papules and pustules and formation of acne scars.
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金Project (51171104) supported by the National Natural Science Foundation of China
文摘Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.
基金supported by the Fundamental Research Funds for Central Universities of China(No. XDJK2014C008)the National Natural Science Foundation of China(No.51171156)the Key Scientific and Technoogical Projects of Chongqing(Nos.CSTC2012GGYS5001 and CSTC2013JCYJYS5002)
文摘An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastableη′phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transfor-mation was also demonstrated by first-principles calculations.
文摘Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.
基金Project(51364035)supported by the National Natural Science Foundation of ChinaProject(CX2015055)supported by the Innovation Special Funds of Nanchang University for Graduate Student,China
文摘The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC),hardness and tensile tests.The results show that Mg(Zn,Cu,Al)2phases gradually dissolve into the matrix,yet the size andmorphology of Al7Cu2Fe phase exhibit no change with the increase of the solution treatment temperature and time due to its highmelting point.When the solution treatment temperature and time continue to increase,the formation of coarse black Mg2Si particlesoccurs.Compared to the as-cast alloy,the microhardness,tensile strength,and elongation of the sample under solution heat treatmentat460°C for5h are increased by55.1%,40.9%and109.1%,respectively.This is because the eutectic Mg(Zn,Cu,Al)2phases almostcompletely dissolve and basically no coarse black Mg2Si particles are formed.
文摘The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min.
基金supported by the National Natural Science Foundation of China (No. 51101003)
文摘In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and temperature, the different structures were obtained from the initial near-γ (NG) microstructures by heat treatment in the α+γ field. The results show that the microstructures of samples after furnace cooling (FC) consist primarily of equiaxed γ and α 2 grains, with a few grains containing lamellae. Duplex microstructures consist mainly of γ grains and lamellar colonies were obtained in the quenching into another furnace at 900°C (QFC) samples. However, further increasing of the cooling rate to air cooling (AC) induces the transformation of α→α_2 and results in a microstructure with equiaxed γ and α_2 grains, and no lamellar colonies are found.
基金the National Natural Science Foundation of China(51361010,51665012)supported by China Scholarship Council.
文摘The influence of solid solution treatment on the microstructure and corrosion resistance of as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy is characterized.The microstructure of the as-cast Mg_(95.5)Zn_(1.5)Y_(3) alloy mainly consisted ofα-Mg,W(Mg_(3)Zn_(3)Y_(2))phase,and the long period stacking ordered(LPSO)(Mg_(12)ZnY)phase.After solid solution treatment,most of the W phase disappears gradually with increasing solution treatment time,with only a small amount of W phase distributed as particle.The LPSO phase slightly dissolved into substrate,and its morphology transitions from blocky shape to rod shape.Solid solution treatment of Mg_(95.5)Zn_(1.5)Y_(3) exhibits excellent corrosion resistance,because the Y and Zn atoms became enriched in the matrix and the changed morphologies of the LPSO and W phases were modified through heat treatment.The alloy created with solid solution treatment at 520 ℃ for 10 hours exhibits corrosion potential of−1.419 V,suggesting a significant improvement in corrosion performance.
基金Projects(51404183,51504177)supported by the National Natural Science Foundation of China。
文摘The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.
文摘In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.
基金Project(51201044) supported by the National Natural Science Foundation of ChinaProject(HEUCFG201836) supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(LBH-Q16046) supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,ChinaProject supported by the Key Laboratory of Superlight Materials&Surface Technology(Harbin Engineering University),Ministry of Education,China
文摘To clarify phase transformation evolution of Nb-doped Ni-Mn-Ga bulk alloys after aging and ball milling, the microstructure and phase transformation of the aged and ball-milled dual-phase Nb-doped Ni-Mn-Ga alloys were investigated by SEM, EDS, XRD, DSC and susceptibility measurements. The as-cast alloys were mainly composed of the second phase with layer-shape and presented a reduced martensitic transformation with increasing the second phase content. The second phase transformed from layer-shape to dense bar-shape and the martensitic transformation was enhanced after being quenched at 1173 K. After aging at 673 and 873 K, the 3% Nb alloy with less second phase exhibited a single-step phase transformation, whereas the 6% Nb and 9% Nb alloys with more second phase exhibited a two-step martensitic transformation and Curie transition. The martensitic transformation and Curie transition of the as-milled dual-phase particles disappeared and were retrieved after annealing at 1073 K due to the recovery of high ordered structure of the matrix.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant no.51301151)Jiangsu Province Natural Science Foundation of China(Grant nos.BK20130447 and BK20160869).
文摘The solution of the intermetallic phase and the homogenization of composition are important for Mg alloy biomaterials.A single-phase Mg-6Zn alloy with the average grain size of about 20μm was prepared by ECAP processed for six passes at 320°C.It indicated that the ECAP could significantly promote the process of solid solution in Mg-Zn alloy.The results showed that complete dissolution of the intermetallic phase improved the corrosion resistance of Mg-6Zn alloy in 0.9%NaCl solution by turning the corrosion behavior into uniform corrosion and increased the hardness in combination with its smaller grain size.
文摘The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. The results exhibit that aging temperatures influence the distribution of α2 phase precipitated and cause the changes in growth speed of α2 phase. For various aging temperatures, the time to finish precipitation of α2 phase is different. The facts that various distribution characteristics and growth speed of α2 ordered phase are caused by changed aging condition imply optimal selection and control for precipitation of α2 ordered phase reachable. Some discussions on adoptable aging steps are presented.
基金the financial support from the National High Magnetic Field Laboratory under NSF DMR-0084173
文摘The volume fraction and morphology of the TCP-phase formed in two kinds of Ni- Mo-Cr-Re superalloys under different heat treatment conditions were investigated in this paper. In Re-5% alloy, with increasing of the heat treatment temperature and prolonging the holding time, the volume fraction of TCP-phase decreased and the TCP-phase size increased. At relatively lower temperature, the TCP-phase prefers to present in the dendrite cores. In Re-10% alloy, the volume fraction and size have the same change tendency as that of in Re-5% alloy, but the morphology will change from needle-like and block-like to sphere when the temperature increases. The TCP-phases formed in these two Ni-Mo-Cr-Re alloys are σ and P phase.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0902303)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018GY-121N)the National Key Project of Magneto Constrained Fusion Energy Development Program,China(Grant No.2015GB115001)
文摘The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor powder depend on heat treatment atmosphere. Phase assemblage of(Bi,Pb)-2212, AEC, CuO, and small Bi-2201 can be obtained by heat-treated in N2-0.1%O_2 atmosphere. For precursor powder, there is sufficient reaction process at 770℃, and the dimension of Bi-2212 phase increases rapidly with the increase of heat treatment temperature and time. The dimension of AEC phase also increases by extending heat treatment time. As a balance among phase assemblage, dimension of particle and adequate reaction, a reasonable precursor powder can be obtained by heat-treated at 770℃ for 12 h–16 h in N2-0.1%O_2 atmosphere. Critical current of 37-filament Bi-2223 tape is about 120 A, which confirms that these heat treatment parameters are reasonable.
基金supported by the National Natural Science Foundation of China(No.20706039)the National Basic Research Program(973 Program) of China (No.2005CB221204)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi of China in 2010the Young Scientific and the Technical Fund of Shanxi of China (No.2006021010)
文摘Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.
基金the financial support of Qinghai Provincial Science and Technology Department Basic Research Program (No.2020-ZJ-707) to carry out this research work。
文摘In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.
基金The work was supported by the National Advanced Materials Connittee of China(Grant No.970321016)the National Natural Science Foundation of Chind(No.59895152).
文摘There are many Zr particles in as-cast NiAl-33.5Cr-0.5Zr (at. pct) alloy, which usually exist at the edge of eutectic of beta -NiAl and cx-Cr. After air and furnace cooling solution treatments, far 1400 degreesC, 2 h and 1450 degreesC, 1 h, pure Zr phase remains in the furnace cooling (F.C.) state alloys and Ni2AlZr phase forms in the air cooling (A.C.) state alloys. During solution treatment at 1450 degreesC, bulk and 'fish bone' shape Zr-rich phases form respectively in F.C. and A.C. state alloys. A 'river' shape Ni2AlZr phase forms after 1450 C for 1h F.C. and 850 degreesC for 12 h, F.C.. The alloy has less pure Zr and Ni2AlZr phase after 1400 degreesC with both air and furnace cooling followed by 850 C and 950 C for 12 h, F.C. aging treatments, respectively. Additionally, there is a ternary eutectic of NiAlZr and a phase enriched Zr and Cr forms at the edge of the eutectic of beta -NiAl and alpha -Cr in the alloy treated at 1400 degreesC, 2 h, F.C. and 950 degreesC, 12 h, F.C.