In shock wave's pressure testing,a dynamic compensation digital filter is designed based on particle swarm optimization (PSO) algorithm.Dynamic calibration experiment and simulation are conducted for the pressure s...In shock wave's pressure testing,a dynamic compensation digital filter is designed based on particle swarm optimization (PSO) algorithm.Dynamic calibration experiment and simulation are conducted for the pressure sensor.PSO algorithm is applied on Matlab platform to achieve optimization according to input and output data of the sensor as well as the reference model,and the global optimal values got by optimization become the parameters of the compensator.Finally,the dynamic compensation filter is established on LabVIEW platform.The experimental results show that the data after processing with the compensation filter truly reflects the input signal.展开更多
There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and...There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and the concrete principle,method and steps for determining the shape standard curve are not put forward,therefore,they are not applicable in industrial production.This is the weakest spot in the research on the basic shape theory.In this paper,the basic shape standard curve and the transverse distribution curve of the exit thickness are attained with stepwise optimization,which is based on the theoretical calculation method of the shape standard curve of strip mills proposed by authors.By calculating the shape discrimination model and the shape forecast model separately,the simultaneous iterative calculation by the previous method is avoided,and the speed and stability of calculation are improved.The compensation models of the transverse temperature difference of the strip,the shape detection roller deflection and the shape of the strip coil are established,respectively,meantime,the basic shape standard curves are compensated,and the relatively perfect theoretical establishment method of the shape standard curve is formed.The simulation and calculation are done on a 1 220 mm five-stand cold strip tandem mill.The simulation and calculation result shows that the principle,method and steps for determining the shape standard curve are correct and feasible,and the correctness of theoretical analysis and calculation is verified.This paper proposes an idea and a method for the establishment of the shape standard curve in the rolling processes of cold strip mills,which develop the theory and model of the shape standard curve and improve the quality and efficiency of the shape control in the rolling processes of cold strip mills.展开更多
The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stabili...The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.展开更多
Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the s...Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the slip of induction motor to maintain its stable operation at different frequencies and loads. In this paper a slip compensator, based on fuzzy logic incremental controller has been developed to improve the steady state performance of efficiency-optimized three-phase induction motor drive system. The slip control is accomplished through a fuzzy controller with 9 rules, taking speed error and speed error variation as inputs, to produce the frequency. The proposed controller reduces the slip occurring at low frequencies and light loads to certain value, and also reduces the energy efficiency of the system.展开更多
Interregional compensation for farmland protection(IRCFP)is a policy instrument for encouraging farmland protection through interregional fiscal transfer payments.Previous practices and studies on IRCFP have generally...Interregional compensation for farmland protection(IRCFP)is a policy instrument for encouraging farmland protection through interregional fiscal transfer payments.Previous practices and studies on IRCFP have generally determined the payers and recipients of compensation based on the present distribution of farmland,and the compensation standards did not combine farmland development right value with farmland deficit and surplus,resulting in insignificant effects on farmland protection and even policy failure.Therefore,in this study,we proposed an interregional compensation mechanism for farmland protection based on farmland allocation optimization by considering 31 provincial-level regions in China.The results showed that(1)the determination of farmland surplus or deficit areas based on farmland allocation optimization met the regional construction land demand from the perspective of achieving food security.(2)The combination of the compensation value standard and cropland deficit and surplus had a positive effect on farmland protection.(3)Interregional compensation for farmland protection based on farmland allocation optimization can coordinate economic development,farmland protection,and ecological conservation.Finally,we discussed the rationality of interregional compensation for farmland protection based on farmland allocation optimization and designed the operation mechanism of IRCFP.展开更多
AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedu...AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.展开更多
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg gratin...We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.展开更多
There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a compreh...There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a comprehensive energy-saving optimization model of asynchronous motor for voltage regulation based on static synchronous compensator(STATCOM)is put forward.By analyzing the working principle and operation performance of static synchronous compensator regulating voltage,a new energy-efficient optimization method for asynchronous motor is proposed based on the voltage regulator model to achieve soft start,continuous dynamic reactive power compensation and the terminal voltage stability control.The multi-objective optimal operation of asynchronous motor is realized by controlling the inverter to adjust the reactive current dynamically.The strategy reduces the influence of starting current and grid voltage by soft starting,and realizes the function of reactive power compensation and terminal voltage stabilization.The effectiveness and superiority of the proposed model is verified by the simulation analysis and the results of comparison with the motor started directly.展开更多
The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to co...The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to compensate the voltage sags under various faults in the grid systems. The SMES is selected as an energy storage unit to improve the capability of voltage sag compensation. Optimized Dual Fuzzy Flow (ODFF) logic controller is designed to prevent the voltage sag time during excessive phase voltage variation. Hence the proposed controller strategy reduces the total harmonic distortion during various fault conditions. To regulate the contribution of active power, the least possible value is improved using ODFF. The depth of voltage sags compensation is achieved by the over modulation and an iterative loop is designed in the control block. While protecting sensitive loads from voltage disturbances, and sags initiated by the power system, the proposed configuration is advantageous for an industrial implementation. It is found that the proposed method can result in more than 50% additional sag support time when compared with the previous methods such as PI and PSO. Utilizing MATLAB Simulink, compensation of sag and minimization of THD is established, and the simulation tests are performed to evaluate the performance of the proposed control method.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n tim...The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.展开更多
This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation...This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation of the gas in the servo system was obtained.The Stribeck friction compensation model of a pneumatic finger cylinder controlled by a proportional valve was established and the experimental platform built.To allow the system output to bet-ter track the change in the input signal,the flow-gain compensation method was adopted.On this basis,a friction compensation control strategy based on a differential evolution algorithm was proposed and applied to the position control system of a pneumatic finger cylinder.Finally,the strategy was compared with the traditional proportional derivative(PD)strategy and that with friction compensation.The experimental results showed that the position accuracy of the finger cylinder position control system can be improved by using the friction compensation strategy based on the differential evolution algorithm to optimize the PD parameters.展开更多
An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is c...An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, s...Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.展开更多
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ...A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.展开更多
Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF...Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.展开更多
In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of acti...In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.展开更多
Public art has practical significance by showing a variety of forms to explore the various design factors on the psychological reactions of different people. Public art should fit the characteristics of human physiolo...Public art has practical significance by showing a variety of forms to explore the various design factors on the psychological reactions of different people. Public art should fit the characteristics of human physiology and psychology. The mental aberration phenomenon induced by unhealthy circumstance could be adjusted and compensated by certain style of public art, and from which the optimization of psychological ecology is resulted. A variety of psychological ecology environment, such as gestalt, artistic exaggeration, implicit, pleasure, interesting, relax, mystery, intricacy, metaphor, and so on, could be constructed by different methods in public art. The excellent public art design optimizes the person's mental spiritual ecology, reduces the burden on people's lives and enhances the quality of life by using the meaningful forms and combinations to achieve the living environment and people's coordination.展开更多
Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emis...Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emission reduction in power industry. But under the current power purchase mode, grid companies must first perform the contract. This is extremely uneconomical and not environmentally friendly. Based on hedging theory, this paper proposes a power purchase optimization model using the strategy of “compression and compensation”. If outer price is lower than the contract price, the grid can compress contract power appropriately, leaving more space for purchasing electricity;if outer price is not attractive enough, the grid should timely improve contract proportion, compensating the deviations of contract caused by "compression". Based on the strategy of "compression and compensation", it can effectively reduce the abandoned wind and water, enhance the economic and social benefits of provincial power grid.展开更多
文摘In shock wave's pressure testing,a dynamic compensation digital filter is designed based on particle swarm optimization (PSO) algorithm.Dynamic calibration experiment and simulation are conducted for the pressure sensor.PSO algorithm is applied on Matlab platform to achieve optimization according to input and output data of the sensor as well as the reference model,and the global optimal values got by optimization become the parameters of the compensator.Finally,the dynamic compensation filter is established on LabVIEW platform.The experimental results show that the data after processing with the compensation filter truly reflects the input signal.
基金supported by National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA04Z143)National Science and Technology Support Plan of China(Grant No.2007BAF02B10)Hebei Provincial Great Natural Science Foundation of China(Grant No.E2006001038)
文摘There are very few researches on the shape standard curve currently,and they merely remain on the level of description of the general concept and production experiences,lacking of the in-depth theoretical analysis,and the concrete principle,method and steps for determining the shape standard curve are not put forward,therefore,they are not applicable in industrial production.This is the weakest spot in the research on the basic shape theory.In this paper,the basic shape standard curve and the transverse distribution curve of the exit thickness are attained with stepwise optimization,which is based on the theoretical calculation method of the shape standard curve of strip mills proposed by authors.By calculating the shape discrimination model and the shape forecast model separately,the simultaneous iterative calculation by the previous method is avoided,and the speed and stability of calculation are improved.The compensation models of the transverse temperature difference of the strip,the shape detection roller deflection and the shape of the strip coil are established,respectively,meantime,the basic shape standard curves are compensated,and the relatively perfect theoretical establishment method of the shape standard curve is formed.The simulation and calculation are done on a 1 220 mm five-stand cold strip tandem mill.The simulation and calculation result shows that the principle,method and steps for determining the shape standard curve are correct and feasible,and the correctness of theoretical analysis and calculation is verified.This paper proposes an idea and a method for the establishment of the shape standard curve in the rolling processes of cold strip mills,which develop the theory and model of the shape standard curve and improve the quality and efficiency of the shape control in the rolling processes of cold strip mills.
基金supported by the National Natural Science Foundation of China(Grant No.62073213).
文摘The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.
文摘Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the slip of induction motor to maintain its stable operation at different frequencies and loads. In this paper a slip compensator, based on fuzzy logic incremental controller has been developed to improve the steady state performance of efficiency-optimized three-phase induction motor drive system. The slip control is accomplished through a fuzzy controller with 9 rules, taking speed error and speed error variation as inputs, to produce the frequency. The proposed controller reduces the slip occurring at low frequencies and light loads to certain value, and also reduces the energy efficiency of the system.
基金National Natural Science Foundation of China,No.42101280National Social Science Foundation of China,No.19FGLB071。
文摘Interregional compensation for farmland protection(IRCFP)is a policy instrument for encouraging farmland protection through interregional fiscal transfer payments.Previous practices and studies on IRCFP have generally determined the payers and recipients of compensation based on the present distribution of farmland,and the compensation standards did not combine farmland development right value with farmland deficit and surplus,resulting in insignificant effects on farmland protection and even policy failure.Therefore,in this study,we proposed an interregional compensation mechanism for farmland protection based on farmland allocation optimization by considering 31 provincial-level regions in China.The results showed that(1)the determination of farmland surplus or deficit areas based on farmland allocation optimization met the regional construction land demand from the perspective of achieving food security.(2)The combination of the compensation value standard and cropland deficit and surplus had a positive effect on farmland protection.(3)Interregional compensation for farmland protection based on farmland allocation optimization can coordinate economic development,farmland protection,and ecological conservation.Finally,we discussed the rationality of interregional compensation for farmland protection based on farmland allocation optimization and designed the operation mechanism of IRCFP.
文摘AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.
基金Project supported by the National Basic Research Program,China(Grant Nos.2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) Chinathe China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
文摘There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a comprehensive energy-saving optimization model of asynchronous motor for voltage regulation based on static synchronous compensator(STATCOM)is put forward.By analyzing the working principle and operation performance of static synchronous compensator regulating voltage,a new energy-efficient optimization method for asynchronous motor is proposed based on the voltage regulator model to achieve soft start,continuous dynamic reactive power compensation and the terminal voltage stability control.The multi-objective optimal operation of asynchronous motor is realized by controlling the inverter to adjust the reactive current dynamically.The strategy reduces the influence of starting current and grid voltage by soft starting,and realizes the function of reactive power compensation and terminal voltage stabilization.The effectiveness and superiority of the proposed model is verified by the simulation analysis and the results of comparison with the motor started directly.
文摘The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to compensate the voltage sags under various faults in the grid systems. The SMES is selected as an energy storage unit to improve the capability of voltage sag compensation. Optimized Dual Fuzzy Flow (ODFF) logic controller is designed to prevent the voltage sag time during excessive phase voltage variation. Hence the proposed controller strategy reduces the total harmonic distortion during various fault conditions. To regulate the contribution of active power, the least possible value is improved using ODFF. The depth of voltage sags compensation is achieved by the over modulation and an iterative loop is designed in the control block. While protecting sensitive loads from voltage disturbances, and sags initiated by the power system, the proposed configuration is advantageous for an industrial implementation. It is found that the proposed method can result in more than 50% additional sag support time when compared with the previous methods such as PI and PSO. Utilizing MATLAB Simulink, compensation of sag and minimization of THD is established, and the simulation tests are performed to evaluate the performance of the proposed control method.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
文摘The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.
基金Supported by Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-202016)Henan Province Science and Technology Key Project of China(Grant No.202102210081)+1 种基金Fundamental Research Funds for Henan Province Colleges and Universities of China(Grant No.NSFRF140120)Doctor Foundation of Henan Polytechnic University of China(Grant No.B2012-101).
文摘This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation of the gas in the servo system was obtained.The Stribeck friction compensation model of a pneumatic finger cylinder controlled by a proportional valve was established and the experimental platform built.To allow the system output to bet-ter track the change in the input signal,the flow-gain compensation method was adopted.On this basis,a friction compensation control strategy based on a differential evolution algorithm was proposed and applied to the position control system of a pneumatic finger cylinder.Finally,the strategy was compared with the traditional proportional derivative(PD)strategy and that with friction compensation.The experimental results showed that the position accuracy of the finger cylinder position control system can be improved by using the friction compensation strategy based on the differential evolution algorithm to optimize the PD parameters.
基金supported by the National Natural Science Foundation of China(60574023)the Natural Science Foundation of Shandong Province(Z2005G01).
文摘An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.
文摘Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.
基金Navy Engineering University Natural Science Foundation (NoHGDJJ05013)
文摘A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA412010).
文摘Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.61863023).
文摘In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.
基金Sponsored by State Scholarship Fund sponsored by China Scholarship Council(201307095001)
文摘Public art has practical significance by showing a variety of forms to explore the various design factors on the psychological reactions of different people. Public art should fit the characteristics of human physiology and psychology. The mental aberration phenomenon induced by unhealthy circumstance could be adjusted and compensated by certain style of public art, and from which the optimization of psychological ecology is resulted. A variety of psychological ecology environment, such as gestalt, artistic exaggeration, implicit, pleasure, interesting, relax, mystery, intricacy, metaphor, and so on, could be constructed by different methods in public art. The excellent public art design optimizes the person's mental spiritual ecology, reduces the burden on people's lives and enhances the quality of life by using the meaningful forms and combinations to achieve the living environment and people's coordination.
文摘Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emission reduction in power industry. But under the current power purchase mode, grid companies must first perform the contract. This is extremely uneconomical and not environmentally friendly. Based on hedging theory, this paper proposes a power purchase optimization model using the strategy of “compression and compensation”. If outer price is lower than the contract price, the grid can compress contract power appropriately, leaving more space for purchasing electricity;if outer price is not attractive enough, the grid should timely improve contract proportion, compensating the deviations of contract caused by "compression". Based on the strategy of "compression and compensation", it can effectively reduce the abandoned wind and water, enhance the economic and social benefits of provincial power grid.