The uncertainty disturbance is one of the main disturbances that seriously influences the stabilization precision of an aerial inertially stabilized platform(ISP)system.In this paper,to improve the stabilization preci...The uncertainty disturbance is one of the main disturbances that seriously influences the stabilization precision of an aerial inertially stabilized platform(ISP)system.In this paper,to improve the stabilization precision of the ISP under disturbance uncertainty,a robust H∞controller is designed in this paper.Then,the reduction order is carried out for high-order controllers generated by the robust H∞loop shaping control method.The application of the minimum implementation and balanced truncation algorithm in controller reduction is discussed.First,the principle of reduced order of minimum implementation and balanced truncation are analyzed.Then,the method is used to reduce the order of the high-order robust H∞loop shaping controller.Finally,the method is analyzed and verified by the simulations and experiments.The results show that by the reduced-order method of minimum implementation and balanced truncation,the stabilization precision of the robust H∞loop shaping controller is increased by about 10%.展开更多
The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil...The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.展开更多
A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking ...A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.展开更多
T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuz...T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.展开更多
The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems ...The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems is of great significance.Considering that multiple systems exist in switching and alternating work in the actual production process,but the system itself often has external perturbation and interference.To solve the above problems,this paper investigates the output feedback robust H_(∞)stabilization for a class of discrete-time 2-D switched systems,which the Roesser model with uncertainties represents.First,sufficient conditions for exponential stability are derived via the average dwell time method,when the system’s interference and external input are zero.Furthermore,in the case of introducing the external interference,the weighted robust H_(∞)disturbance attenuation performance of the underlying system is further analyzed.An output feedback controller is then proposed to guarantee that the resulting closed-loop system is exponentially stable and has a prescribed disturbance attenuation levelγ.All theorems mentioned in the article will also be given in the form of linear matrix inequalities(LMI).Finally,a numerical example is given,which takes two uncertain values respectively and solves the output feedback controller’s parameters by the theorem proposed in the paper.According to the required controller parameter values,the validity of the theorem proposed in the article is compared and verified by simulation.展开更多
This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint...This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.展开更多
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde...Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.展开更多
This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes cons...This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.展开更多
This paper considers the robust per formance design problem of the linear systems with both unmodelled dynamics and real parametric uncertainties. We suggest for the first time that the problem can besolved by the H∞...This paper considers the robust per formance design problem of the linear systems with both unmodelled dynamics and real parametric uncertainties. We suggest for the first time that the problem can besolved by the H∞ mixed sensitivity method. The main idea is as follows: Firstly, the original problem istransformed into the robust per formance design problem for a pure parameter uncertain system. Then, theresulting problem is reduced to a standard H∞ control problem which can be solved by the H∞ state feedbacksynthesis method or Doyle’s "DGKF" algorithm.展开更多
This paper focuses on the H_ mixed sensitivity problems of the system with input multiplicative uncertainty, and proposes a new robust H_ /LTR synthesis method. The design procedure consists of two steps. First, an H_...This paper focuses on the H_ mixed sensitivity problems of the system with input multiplicative uncertainty, and proposes a new robust H_ /LTR synthesis method. The design procedure consists of two steps. First, an H_ full state feedback control is designed to satisfy the robust stability and performance specifications. Subsequently, the properties of the state feedback are reobtained by designing full state observers.展开更多
基金supported in part by the Beijing Natural Science Foundation(Grant No.3182021)National Natural Science Foundation of China(Grant No.51775017)+1 种基金Research Project of Beijing Academy of Quantum Information Sciences(Grant No.Y18G30)the Open Research Fund of the State Key Laboratory for Manufacturing Systems Engineering(Grant No.sklms2018005)
文摘The uncertainty disturbance is one of the main disturbances that seriously influences the stabilization precision of an aerial inertially stabilized platform(ISP)system.In this paper,to improve the stabilization precision of the ISP under disturbance uncertainty,a robust H∞controller is designed in this paper.Then,the reduction order is carried out for high-order controllers generated by the robust H∞loop shaping control method.The application of the minimum implementation and balanced truncation algorithm in controller reduction is discussed.First,the principle of reduced order of minimum implementation and balanced truncation are analyzed.Then,the method is used to reduce the order of the high-order robust H∞loop shaping controller.Finally,the method is analyzed and verified by the simulations and experiments.The results show that by the reduced-order method of minimum implementation and balanced truncation,the stabilization precision of the robust H∞loop shaping controller is increased by about 10%.
基金supported by the National Natural Science Foundation of China(607404306646087403160904060)
文摘The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.
文摘A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
文摘T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.
基金Research supported by the Science and Technology Development Program of Jilin Province,the project named:Research on Key Technologies of Intelligent Virtual Interactive 3D Display System(20180201090GX).
文摘The two-dimensional(2-D)system has a wide range of applications in different fields,including satellite meteorological maps,process control,and digital filtering.Therefore,the research on the stability of 2-D systems is of great significance.Considering that multiple systems exist in switching and alternating work in the actual production process,but the system itself often has external perturbation and interference.To solve the above problems,this paper investigates the output feedback robust H_(∞)stabilization for a class of discrete-time 2-D switched systems,which the Roesser model with uncertainties represents.First,sufficient conditions for exponential stability are derived via the average dwell time method,when the system’s interference and external input are zero.Furthermore,in the case of introducing the external interference,the weighted robust H_(∞)disturbance attenuation performance of the underlying system is further analyzed.An output feedback controller is then proposed to guarantee that the resulting closed-loop system is exponentially stable and has a prescribed disturbance attenuation levelγ.All theorems mentioned in the article will also be given in the form of linear matrix inequalities(LMI).Finally,a numerical example is given,which takes two uncertain values respectively and solves the output feedback controller’s parameters by the theorem proposed in the paper.According to the required controller parameter values,the validity of the theorem proposed in the article is compared and verified by simulation.
基金supported by the Deanship of Scientific Research(DSR)at the King Fahd University of Petroleum and Minerals(KFUPM)(141048)
文摘This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.
基金Supported by National Natural Science Foundation of China(Grant Nos.11072106,51375009)
文摘Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61304223, 61673209)the Aeronautical Science Foundation (NO.2016ZA52009)the Fundamental Research Funds for the Central Universities (Nos.NS2017015, NJ20170005)
文摘This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.
文摘This paper considers the robust per formance design problem of the linear systems with both unmodelled dynamics and real parametric uncertainties. We suggest for the first time that the problem can besolved by the H∞ mixed sensitivity method. The main idea is as follows: Firstly, the original problem istransformed into the robust per formance design problem for a pure parameter uncertain system. Then, theresulting problem is reduced to a standard H∞ control problem which can be solved by the H∞ state feedbacksynthesis method or Doyle’s "DGKF" algorithm.
文摘This paper focuses on the H_ mixed sensitivity problems of the system with input multiplicative uncertainty, and proposes a new robust H_ /LTR synthesis method. The design procedure consists of two steps. First, an H_ full state feedback control is designed to satisfy the robust stability and performance specifications. Subsequently, the properties of the state feedback are reobtained by designing full state observers.