This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, th...This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.展开更多
This paper investigates the stochastic resonance (SR) phenomenon in an asymmetric system with coupling between multiplicative and additive noise when the coupling between two noise terms is coloured. The approximate...This paper investigates the stochastic resonance (SR) phenomenon in an asymmetric system with coupling between multiplicative and additive noise when the coupling between two noise terms is coloured. The approximate expression of signal-to-noise ratio has been obtained by applying the two-state theory and SR exhibits in the bistable system. Moreover, the potential asymmetry r and cross-correlation strength λ can weaken the SR phenomenon, while the cross-correlation time r can strengthen the SR phenomenon.展开更多
The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, ...The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, the analytic expression of the quasi-steady distribution function Ps (x, t) is derived by applying the unified coloured noise approximation and the Novikov Theorem; Secondly, the expression of the signal-to-noise ratio (SNR) is obtained in the adiabatic limit to quantify the stochastic resonance. Finally, tile effects of the linear coefficient a, the nonlinear coefficient b, the linear time-delayed feedback coefficient c and the delay time r on Ps(x,t) and SNR^± are discussed. It is found that the effects of the linear coefficient and the nonlinear coefficient, the positive linear time-delayed feedback coefficient and the negative linear time-delayed feedback coefficient, the positive delayed time and the negative delayed time on Ps(x,t) and SNR^± are different, respectively. This discussion would be helpful to the study of the system reliability and controlling stochastic resonance.展开更多
The delay Fokker-Planck equation is given for an asymmetry bistable system with correlated Gaussian white noises. The small delay approximation based on the probability density approach is used and the approximate sta...The delay Fokker-Planck equation is given for an asymmetry bistable system with correlated Gaussian white noises. The small delay approximation based on the probability density approach is used and the approximate stationary probability density function is obtained. The phenomenon of delay induced transitions is found. When a weak periodic signal is added, the phenomenon of stochastic resonance is investigated. Expression of the signal-to-noise ratio (SNR) is obtained by using the two-state theory. It is shown that the time delay can suppress or promote the stochastic resonance phenomenon.展开更多
The effects of correlation between additive and multiplicative noises on the symmetry of an asymmetric bistable system are investigated. The steady-state probability distribution function of the system was calculated ...The effects of correlation between additive and multiplicative noises on the symmetry of an asymmetric bistable system are investigated. The steady-state probability distribution function of the system was calculated by using analytical and numerical methods. Results indicate that i) for the case of positive correlation between noises, as the correlation strength between additive and multiplicative noises, λ, increases, the symmetry of the system is restored; ii) for the case of negative correlation between noises, as the absolute value of λ increases, the symmetry of the system is destroyed; and iii) the analytic prediction agrees well with the stochastic simulation result.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金supported by the Doctor Foundation of Southwest University of Science and Technology of China (Grant No. 08zx7108)
文摘This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091 and 10332030)the Natural Science Foundation of Shaanxi Province (Grant No 2003A03)
文摘This paper investigates the stochastic resonance (SR) phenomenon in an asymmetric system with coupling between multiplicative and additive noise when the coupling between two noise terms is coloured. The approximate expression of signal-to-noise ratio has been obtained by applying the two-state theory and SR exhibits in the bistable system. Moreover, the potential asymmetry r and cross-correlation strength λ can weaken the SR phenomenon, while the cross-correlation time r can strengthen the SR phenomenon.
基金supported by National Natural Science Foundation of China under Grant Nos.10472091 and 10332030
文摘The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, the analytic expression of the quasi-steady distribution function Ps (x, t) is derived by applying the unified coloured noise approximation and the Novikov Theorem; Secondly, the expression of the signal-to-noise ratio (SNR) is obtained in the adiabatic limit to quantify the stochastic resonance. Finally, tile effects of the linear coefficient a, the nonlinear coefficient b, the linear time-delayed feedback coefficient c and the delay time r on Ps(x,t) and SNR^± are discussed. It is found that the effects of the linear coefficient and the nonlinear coefficient, the positive linear time-delayed feedback coefficient and the negative linear time-delayed feedback coefficient, the positive delayed time and the negative delayed time on Ps(x,t) and SNR^± are different, respectively. This discussion would be helpful to the study of the system reliability and controlling stochastic resonance.
基金supported by the National Natural Science Foundation of China (Grant No. 10872165, 10972181)Natural Science Foundation of Shaanxi Province, the Youth and Aoxiang Star Plan for Northwestern Polytechnical University Teachers’ Scientific and Technological Innovation Foundationthe Doctorate Creation Foundation of Northwestern Polytechnical University
文摘The delay Fokker-Planck equation is given for an asymmetry bistable system with correlated Gaussian white noises. The small delay approximation based on the probability density approach is used and the approximate stationary probability density function is obtained. The phenomenon of delay induced transitions is found. When a weak periodic signal is added, the phenomenon of stochastic resonance is investigated. Expression of the signal-to-noise ratio (SNR) is obtained by using the two-state theory. It is shown that the time delay can suppress or promote the stochastic resonance phenomenon.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11347014) and the Key Project of Research Fund of Education Department of Yunnan Province (Grant No. 2013Z097).
文摘The effects of correlation between additive and multiplicative noises on the symmetry of an asymmetric bistable system are investigated. The steady-state probability distribution function of the system was calculated by using analytical and numerical methods. Results indicate that i) for the case of positive correlation between noises, as the correlation strength between additive and multiplicative noises, λ, increases, the symmetry of the system is restored; ii) for the case of negative correlation between noises, as the absolute value of λ increases, the symmetry of the system is destroyed; and iii) the analytic prediction agrees well with the stochastic simulation result.