期刊文献+
共找到12,120篇文章
< 1 2 250 >
每页显示 20 50 100
Impact of different interaction behavior on epidemic spreading in time-dependent social networks
1
作者 黄帅 陈杰 +2 位作者 李梦玉 徐元昊 胡茂彬 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期190-195,共6页
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi... We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy. 展开更多
关键词 epidemic transmission complex network time-dependent networks social interaction
下载PDF
A process-oriented approach for identifying potential landslides considering time-dependent behaviors beyond geomorphological features
2
作者 Xiang Sun Guoqing Chen +4 位作者 Xing Yang Zhengxuan Xu Jingxi Yang Zhiheng Lin Yunpeng Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期961-978,共18页
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands... Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features. 展开更多
关键词 Geomorphological features Evolution history time-dependent stability calculation Landslides identification Qinghai-Tibet Plateau
下载PDF
A GENERALIZED SCALAR AUXILIARY VARIABLE METHOD FOR THE TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
3
作者 司智勇 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期650-670,共21页
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ... This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable. 展开更多
关键词 time-dependent Ginzburg-Landau equation generalized scalar auxiliary variable algorithm maximum bound principle energy stability
下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
4
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The Nonlinear Differential Equation with time-dependent Coefficients The Bifurcation-Integration Solution Nonequilibrium Irreversible States Thermomechanical Dynamics (TMD)
下载PDF
Sample size adaptive strategy for time-dependent Monte Carlo particle transport simulation 被引量:3
5
作者 Dan-Hua ShangGuan Wei-Hua Yan +3 位作者 Jun-Xia Wei Zhi-Ming Gao Yi-Bing Chen Zhi-Cheng Ji 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期127-134,共8页
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain... When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement. 展开更多
关键词 time-dependent Monte Carlo particle transport simulation Shannon entropy Adaptive strategy
下载PDF
N-Doped rGO-Like Carbon Prepared from Coconut Shell:Structure and Specific Capacitance 被引量:1
6
作者 Imam Khambali Budhi Priyanto +8 位作者 Retno Asih Malik Anjelh Baqiya Muhammad Mahyiddin Ramli Nurul Huda Osman Sarayut Tunmee Hideki Nakajima Triwikantoro Mochamad Zainuri Darminto 《Journal of Renewable Materials》 SCIE EI 2023年第4期1823-1833,共11页
An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and ... An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects. 展开更多
关键词 N-DOPED rGO−like carbon coconut shell specific capacitance
下载PDF
Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review 被引量:1
7
作者 Vaishali Sawant Rashmi Deshmukh Chetan Awati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期438-451,I0011,共15页
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power... Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented. 展开更多
关键词 SUPERcapacitORS Energy storage materials Artificial neural network Machine learning capacitance prediction Remaining useful life
下载PDF
Time-dependent variational approach to solve multi-dimensional time-dependent Schr?dinger equation
8
作者 何明睿 王哲 +1 位作者 姚陆锋 李洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期361-366,共6页
We present an efficient approach to solve multi-dimensional time-dependent Schr?dinger equation(TDSE)in an intense laser field.In this approach,each spatial degree of freedom is treated as a distinguishable quasi-part... We present an efficient approach to solve multi-dimensional time-dependent Schr?dinger equation(TDSE)in an intense laser field.In this approach,each spatial degree of freedom is treated as a distinguishable quasi-particle.The non-separable Coulomb potential is regarded as a two-body operator between different quasi-particles.The time-dependent variational principle is used to derive the equations of motion.Then the high-order multi-dimensional problem is broken down into several lower-order coupled equations,which can be efficiently solved.As a demonstration,we apply this method to solve the two-dimensional TDSE.The accuracy is tested by comparing the direct solutions of TDSE using several examples such as the strong-field ionization and the high harmonic generation.The results show that the present method is much more computationally efficient than the conventional one without sacrificing accuracy.The present method can be straightforwardly extended to three-dimensional problems.Our study provides a flexible method to investigate the laser-atom interaction in the nonperturbative regime. 展开更多
关键词 time-dependent variational approach above-threshold ionization high harmonic generation
下载PDF
Structure-guided Capacitance Relationships in Oxidized Graphene Porous Materials Based Supercapacitors
9
作者 Srinivas Gadipelli Hanieh Akbari +4 位作者 Juntao Li Christopher A.Howard Hong Zhang Paul R.Shearing Dan J.L.Brett 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期58-69,共12页
Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO material... Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO materials have been shown to offer superior capacitance over typical nanoporous carbon materials;however,there is a significant variation in reported values,ranging between 25 and 350 F g^(−1).This undermines the structure(e.g.,oxygen functionality and/or surface area)-performance relationships for optimization of cost and scalable factors.This work demonstrates important structure-controlled charge storage relationships.For this,a series of exfoliated graphene(EG)derivatives are produced via thermal-shock exfoliation of GO precursors and following controlled graphitization of EG(GEG)generates materials with varied amounts of porosity,redox-active oxygen groups and graphitic components.Experimental results show significantly varied capacitance values between 30 and 250 F g^(−1)at 1.0 A g^(−1)in GEG structures;this suggests that for a given specific surface area the redox-active and hydrophilic oxygen content can boost the capacitance to 250–300%higher compared to typical mesoporous carbon materials.GEGs with identical oxygen functionality show a surface area governed capacitance.This allows to establish direct structure-performance relationships between 1)redox-active oxygen functional concentration and capacitance and 2)surface area and capacitance. 展开更多
关键词 electric double-layer capacitance graphene-oxide PSEUDOcapacitance structure-performance relationships SUPERcapacitORS
下载PDF
Compensation of Parasitic Capacitance of Quartz Tuning Fork in AFM
10
作者 Yidai Liu 《Journal of Applied Mathematics and Physics》 2023年第5期1404-1413,共10页
We have built an atomic force microscope using a quartz tuning fork as sensor. The excitation method we adopted, the electrical excitation, introduces stray capacitance into the signal-processing circuit. In this repo... We have built an atomic force microscope using a quartz tuning fork as sensor. The excitation method we adopted, the electrical excitation, introduces stray capacitance into the signal-processing circuit. In this report, we demonstrated a simple but effective method to compensate for this parasitic capacitance by adding a compensator circuit consisting of an inverting amplifier and a capacitor. The capacitor is connected in series with the inverting amplifier and the compensator is connected in parallel with the quartz tuning fork. The resonance curve of the system measured after adding the homemade compensator resembles that of a pure RLC circuit, meaning that the stray capacitance is successfully eliminated. Furthermore, we tried to use our equipment to measure PDMS sample and got clean data. This system can be further combined with confocal microscope and diamond with NV defect to build scanning NV magnetometry. 展开更多
关键词 Atomic Force Microscope Quartz Tuning Fork Stray capacitance Compensator Circuit PDMS Sample
下载PDF
Integration of pore structure modulation and B,N co-doping for enhanced capacitance deionization of biomass-derived carbon
11
作者 Yao Qiu Chunjie Zhang +7 位作者 Rui Zhang Zhiyuan Liu Huazeng Yang Shuai Qi Yongzhao Hou Guangwu Wen Jilei Liu Dong Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1488-1500,共13页
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ... Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode. 展开更多
关键词 capacitive deionization Biomass-derived carbon Pore structure B N co-doping Desalination performance
下载PDF
Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
12
作者 魏伟杰 吕伟锋 +2 位作者 韩颖 张彩云 谌登科 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期436-442,共7页
The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in in... The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in integrated circuits.In this study,an innovative gate-all-around(GAA)TFET,which represents a negative capacitance GAA gate-to-source overlap TFET(NCGAA-SOL-TFET),is proposed to increase the driving current.The proposed NCGAA-SOL-TFET is developed based on technology computer-aided design(TCAD)simulations.The proposed structure can solve the problem of the insufficient driving capability of conventional TFETs and is suitable for sub-3-nm nodes.In addition,due to the negative capacitance effect,the surface potential of the channel can be amplified,thus enhancing the driving current.The gateto-source overlap(SOL)technique is used for the first time in an NCGAA-TFET to increase the band-to-band tunneling rate and tunneling area at the silicon-germanium heterojunction.By optimizing the design of the proposed structure via adjusting the SOL length and the ferroelectric layer thickness,a sufficiently large on-state current of 17.20μA can be achieved and the threshold voltage can be reduced to 0.31 V with a sub-threshold swing of 44.98 mV/decade.Finally,the proposed NCGAA-SOL-TFET can overcome the Boltzmann limit-related problem,achieving a driving current that is comparable to that of the traditional complementary metal-oxide semiconductor devices. 展开更多
关键词 negative capacitance(NC) gate-all-around(GAA) silicon-germanium heterojunction gate-tosource overlap(SOL)
下载PDF
Non-harmonic resonance of viscoelastic structures subjected to time-dependent exponentially decreasing transverse distributed loads
13
作者 Nasrin Jafari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期825-840,共16页
In this paper,the non-harmonic resonance of Bernoulli viscoelastic beams,Kirchhoff viscoelastic plates,Timoshenko viscoelastic beams,and Mindlin viscoelastic plates subjected to time-dependent exponentially decreasing... In this paper,the non-harmonic resonance of Bernoulli viscoelastic beams,Kirchhoff viscoelastic plates,Timoshenko viscoelastic beams,and Mindlin viscoelastic plates subjected to time-dependent exponentially decreasing transverse distributed load is investigated for the first time.The constitutive equations are expressed utilizing Boltzmann integral law with a constant bulk modulus.The displacement vector is approximated by employing the separation of variables method.The Laplace transformation is used to transfer equations from the time domain to the Laplace domain and vice versa.The novel point of the proposed method is to express,prove and calculate the critical time in which the displacement will be several times the displacement at time zero.In addition,this new method calculates the maximum deflection at the critical time,explicitly and exactly,without any need to follow the time-displacement curve with a low computational cost.Additionally,the proposed method introduces the critical range of time so that the responses are greater than the responses at time zero. 展开更多
关键词 Bernoulli and Timoshenko viscoelastic beams critical time non-harmonic resonance time-dependent decreasing exponential load Kirchhoff and Mindlin viscoelastic plates
下载PDF
Blowup of Solutions to the Non-Isentropic Compressible Euler Equations with Time-Dependent Damping and Vacuum
14
作者 Yuping Feng Huimin Yu Wanfang Shen 《Journal of Applied Mathematics and Physics》 2023年第7期1881-1894,共14页
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i... This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation. 展开更多
关键词 Compressible Euler Equations BLOWUP General time-dependent Damping VACUUM
下载PDF
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
15
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation capacitive deionization Cyclic stability N-DOPING
下载PDF
Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination
16
作者 Jie Ma Siyang Xing +2 位作者 Yabo Wang Jinhu Yang Fei Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期35-50,共16页
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,... Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes. 展开更多
关键词 Zinc-nickel metal oxide High-density hierarchical capacitive deionization Zinc-doping
下载PDF
Dynamic responses of series parallel-plate mesoscopic capacitors to time-dependent external voltage
17
作者 王锦华 全军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期448-451,共4页
We investigate the dynamic responses of the series parallel-plate mesoscopic capacitors to a time-dependent external voltage. The results indicate that the quantum coherence between two capacitors strongly depends on ... We investigate the dynamic responses of the series parallel-plate mesoscopic capacitors to a time-dependent external voltage. The results indicate that the quantum coherence between two capacitors strongly depends on the frequency of the external voltage and the distance between the two capacitors (c-c distance). The behaviors of the series capacitance incompletely follow the Kirchhoff's laws; only in the low frequency case or the limit of the c-c distance, the capacitance approaches to the classical series capacitance. In addition, the real part of the frequency-dependent capacitance shows a maximum and a minimum, which appear around the peak of the imaginary part. These phenomena may be associated with the plasmon excitation in the mesoscopic capacitors. 展开更多
关键词 electron transport mesoscopic capacitor capacitance quantum coherence
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
18
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
19
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas
20
作者 余乐怡 陆文琪 张丽娜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期58-63,共6页
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic... The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas. 展开更多
关键词 RADIO-FREQUENCY capacitively coupled plasma HARMONICS the electron energy probability function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部