The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant e...Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.展开更多
Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene...Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene evolution. Some sites like Leucine-Rich Repeat (LRR) are of specific interest since homologous recombination can happen. Crossing over, transposon insertion and excision and mutation can produce new specificity. Three models explaining R gene evolution were discussed. More information needed for dissection of R gene evolution though some step can be inferred from genetic and sequence analysis.展开更多
Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial ene...Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial energy absorption,and a stretched beam model and a real beam model are taken as the example for the verification.Meanwhile,for the purpose of comparison with numerical results,a theoretical model is also proposed for the prediction of residual velocity and contact force of the impactor for an impacted skull.Compared with the real beam model,the stretched beam model containing through-thickness pores is easily deformed under the impact,thereby buffering well the external impact energy.The energy absorption efficiency of both the stretched beam model and real beam model is concerned with the threshold velocity for penetration which is directly related to the size of the structural damage area.Overall,there is good agreement between numerical and theoretical results.In addition,the effect of structural geometric parameters(shape and size of the impactor)on the impact resistance of the skull bone is theoretically investigated.The study provides reference for the evaluation of the energy absorption and failure mechanism of the skull under impact loads.展开更多
船舶在冰区海域中航行会受到冰水环境阻力的影响,是冰区船舶快速性研究中的重要影响因素。为合理分析冰区船舶的快速性能,该文采用基于离散元(discrete element method,DEM)和光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)...船舶在冰区海域中航行会受到冰水环境阻力的影响,是冰区船舶快速性研究中的重要影响因素。为合理分析冰区船舶的快速性能,该文采用基于离散元(discrete element method,DEM)和光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法的流固耦合模型模拟船舶冰区航行过程,获得不同航速下的船舶阻力和推进力,进一步计算出螺旋桨的推力、扭矩以及定速航行所需的螺旋桨转速等参数。为研究船体结构、海冰与海水之间的流固耦合作用,文中通过SPH粒子与固定粒子边界相对运动的拟合项直接计算固体与流体之间的相互作用力,建立船体结构、海冰与海水耦合的DEM-SPH模型,并基于该模型分别对船舶在冰区的航行阻力和推进力进行模拟,通过拟合的方式匹配航行阻力和推进力,并考虑尾部流场导致的船体阻力增额,从而预报船舶在特定航速下实现自航所需的螺旋桨转速。此外,文中还模拟了DTMB 5415船模在浮冰区和层冰区中航行的阻力和不同螺旋桨转速下的推力,对船模在不同工况下实现特定航速航行所需的螺旋桨转速进行了预报。计算结果表明:DEM-SPH耦合模型对船-冰、桨-冰作用中的流固耦合过程模拟效果出色,可完整描述船体及尾部伴流场对海冰的拖曳作用;通过文中所述阻力-推力模拟算例及强制力的拟合分析,所形成的基于数值模拟方法的船舶自航下螺旋桨转速预报,可为进一步的试验验证和工程应用推广奠定基础。展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure f...The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure forming model of Portland cement initial hydration was established through the systematical experiments with different cements, the amount of mixing water and the chemical admixture. The experimental results show that, the structure forming model of cement could be divided into three stages, i e, solution-solution equilibrium period, structure forming period and structure stabilizing period. Along with the increase of mixing water, the time of inflexion appeared is in advance for thermal process of cement hydration and worsened for the structure forming process. Comparison with the control specimen, adding Na2SO4 makes the minimum critical point lower, the flattening period shorter and the growing slope after stage one steeper. So the hydration and structure forming process of Portland cement could be described more exactly by applying the thermal model and the structure-forming model.展开更多
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679052)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E2018026)the Defense Industrial Technology Development Program(Grant No.JCKY2016604B001)
文摘Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.
文摘Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene evolution. Some sites like Leucine-Rich Repeat (LRR) are of specific interest since homologous recombination can happen. Crossing over, transposon insertion and excision and mutation can produce new specificity. Three models explaining R gene evolution were discussed. More information needed for dissection of R gene evolution though some step can be inferred from genetic and sequence analysis.
基金This study was funded in part by the National Natural Science Foundation of China(Grant 12002107)the National Postdoctoral Program for Innovative Talents(Grant BX20190101)+3 种基金the China Postdoctoral Science Foundation(Grant 2019M661268)the Heilongjiang Postdoctoral Financial Assistance(Grant LBH-Z19061)The present work was also supported in part by Alexander von Humboldt Foundation(Grant 1155520)(University of Siegen,Germany)the Science and Technology on Advanced Composites in Special Environment Laboratory,Young Elite Scientist Sponsorship Program by CAST(Grant YESS20160190).
文摘Failure mechanism and impact resistance of a human porous cranium are studied in detail by means of theoretical and numerical methods.It is hypothesized that pore distribution of a cranium directly affects cranial energy absorption,and a stretched beam model and a real beam model are taken as the example for the verification.Meanwhile,for the purpose of comparison with numerical results,a theoretical model is also proposed for the prediction of residual velocity and contact force of the impactor for an impacted skull.Compared with the real beam model,the stretched beam model containing through-thickness pores is easily deformed under the impact,thereby buffering well the external impact energy.The energy absorption efficiency of both the stretched beam model and real beam model is concerned with the threshold velocity for penetration which is directly related to the size of the structural damage area.Overall,there is good agreement between numerical and theoretical results.In addition,the effect of structural geometric parameters(shape and size of the impactor)on the impact resistance of the skull bone is theoretically investigated.The study provides reference for the evaluation of the energy absorption and failure mechanism of the skull under impact loads.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
文摘The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure forming model of Portland cement initial hydration was established through the systematical experiments with different cements, the amount of mixing water and the chemical admixture. The experimental results show that, the structure forming model of cement could be divided into three stages, i e, solution-solution equilibrium period, structure forming period and structure stabilizing period. Along with the increase of mixing water, the time of inflexion appeared is in advance for thermal process of cement hydration and worsened for the structure forming process. Comparison with the control specimen, adding Na2SO4 makes the minimum critical point lower, the flattening period shorter and the growing slope after stage one steeper. So the hydration and structure forming process of Portland cement could be described more exactly by applying the thermal model and the structure-forming model.