The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
By using a new generally projective Riccati equation method and with the help of symbolic computation,we consider a nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. As a res...By using a new generally projective Riccati equation method and with the help of symbolic computation,we consider a nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. As a result,some new soliton solutions, rational function solution, and periodic solutions are obtained.展开更多
For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of th...For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of the nonlinearities depend on time periodically with the same frequencies as the natural angular frequencies, the resonance phenomenon is inevitable. In this paper, for certain periodic functions α(t) and β(t) with resonance frequencies, we give the existence and stability of some nontrivial exact periodic solutions for a one-dimensional αβ-FPU model composed of three particles with periodic boundary conditions.展开更多
We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<sp...We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.展开更多
In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ...In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ ≤ 1, μ 〉 λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.展开更多
A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point ...A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point at x = 0. The error analysis of the method is described. Numerical results are given to illustrate the efficiency of the proposed method.展开更多
We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can...We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.展开更多
A comparative study is made among Laplace Transform Technique (LTT) and Fourier Transform Technique (FTT) to obtain one-dimensional analytical solution for conservative solute transport along unsteady groundwater flow...A comparative study is made among Laplace Transform Technique (LTT) and Fourier Transform Technique (FTT) to obtain one-dimensional analytical solution for conservative solute transport along unsteady groundwater flow in semi-infinite aquifer. The time-dependent source of contaminant concentration is considered at the origin and at the other end of the aquifer is supposed to be zero. Initially, aquifer is not solute free which means that the solute concentration exits in groundwater system and it is assumed as a uniform concentration. The aquifer is considered homogeneous and semi-infinite. The time-dependent velocity expressions are considered. The result may be used as preliminary predictive tools in groundwater management and benchmark the numerical code and solutions.展开更多
In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in line...In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.展开更多
We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the ...We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.展开更多
The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension ...The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
Time-dependent,two-dimensional(2 D)magnetohydrodynamic(MHD)micropolar nanomaterial flow over a shrinking/stretching surface near the stagnant point is considered.Mass and heat transfer characteristics are incorporated...Time-dependent,two-dimensional(2 D)magnetohydrodynamic(MHD)micropolar nanomaterial flow over a shrinking/stretching surface near the stagnant point is considered.Mass and heat transfer characteristics are incorporated in the problem.A model of the partial differential expressions is altered into the forms of the ordinary differential equations via similarity transformations.The obtained equations are numerically solved by a shooting scheme in the MAPLE software.Dual solutions are observed at different values of the specified physical parameters.The stability of first and second solutions is examined through the stability analysis process.This analysis interprets that the first solution is stabilized and physically feasible while the second one is un-stable and not feasible.Furthermore,the natures of various physical factors on the drag force,skin-friction factor,and rate of mass and heat transfer are determined and interpreted.The micropolar nanofluid velocity declines with a rise in the suction and magnetic parameters,whereas it increases by increasing the unsteadiness parameter.The temperature of the micropolar nanofluid rises with increase in the Brownian motion,radiation,thermophoresis,unsteady and magnetic parameters,but it decreases against an increment in the thermal slip constraint and Prandtl number.The concentration of nanoparticles reduces against the augmented Schmidt number and Brownian movement values but rises for incremented thermophoresis parameter values.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi...We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.展开更多
We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer p...We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials.The present work is illustrated with two special cases of the general form:the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.展开更多
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands...Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金国家重点基础研究发展计划(973计划),National Key Basic Research Development of China
文摘By using a new generally projective Riccati equation method and with the help of symbolic computation,we consider a nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. As a result,some new soliton solutions, rational function solution, and periodic solutions are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1130110611201288+6 种基金and 11261013)the Natural Science Foundation of Guangxi Zhuang Autonomous RegionChina(Grant No.2014GXNSFBA118017)the Innovation Project of Graduate Education of Guangxi Zhuang Autonomous RegionChina(Grant No.YCSZ2014143)the Guangxi Experiment Center of Information Science(Grant No.YB1410)
文摘For lower dimensional Fermi–Pasta–Ulam(FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the H′enon–Heiles Hamiltonian. When the strengths α, β of the nonlinearities depend on time periodically with the same frequencies as the natural angular frequencies, the resonance phenomenon is inevitable. In this paper, for certain periodic functions α(t) and β(t) with resonance frequencies, we give the existence and stability of some nontrivial exact periodic solutions for a one-dimensional αβ-FPU model composed of three particles with periodic boundary conditions.
文摘We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.
基金supported in part by the NNSF of China(11271323,91330105)the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002)the Science Foundation in Higher Education of Henan(18A110036)
文摘In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ ≤ 1, μ 〉 λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.
文摘A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point at x = 0. The error analysis of the method is described. Numerical results are given to illustrate the efficiency of the proposed method.
基金supported by the Key Project of the Chinese Ministry of Education(Grant No.2011015)the Natural Science Foundation of Hebei Province of China(Grant No.A2012202023)
文摘We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.
文摘A comparative study is made among Laplace Transform Technique (LTT) and Fourier Transform Technique (FTT) to obtain one-dimensional analytical solution for conservative solute transport along unsteady groundwater flow in semi-infinite aquifer. The time-dependent source of contaminant concentration is considered at the origin and at the other end of the aquifer is supposed to be zero. Initially, aquifer is not solute free which means that the solute concentration exits in groundwater system and it is assumed as a uniform concentration. The aquifer is considered homogeneous and semi-infinite. The time-dependent velocity expressions are considered. The result may be used as preliminary predictive tools in groundwater management and benchmark the numerical code and solutions.
基金Supported by National Natural Science Foundation of China under Grant No.90511009
文摘In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.
文摘We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.
文摘The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
文摘Time-dependent,two-dimensional(2 D)magnetohydrodynamic(MHD)micropolar nanomaterial flow over a shrinking/stretching surface near the stagnant point is considered.Mass and heat transfer characteristics are incorporated in the problem.A model of the partial differential expressions is altered into the forms of the ordinary differential equations via similarity transformations.The obtained equations are numerically solved by a shooting scheme in the MAPLE software.Dual solutions are observed at different values of the specified physical parameters.The stability of first and second solutions is examined through the stability analysis process.This analysis interprets that the first solution is stabilized and physically feasible while the second one is un-stable and not feasible.Furthermore,the natures of various physical factors on the drag force,skin-friction factor,and rate of mass and heat transfer are determined and interpreted.The micropolar nanofluid velocity declines with a rise in the suction and magnetic parameters,whereas it increases by increasing the unsteadiness parameter.The temperature of the micropolar nanofluid rises with increase in the Brownian motion,radiation,thermophoresis,unsteady and magnetic parameters,but it decreases against an increment in the thermal slip constraint and Prandtl number.The concentration of nanoparticles reduces against the augmented Schmidt number and Brownian movement values but rises for incremented thermophoresis parameter values.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072340)the China Postdoctoral Science Foundation(Grant No.2022M720727)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB130).
文摘We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.
文摘We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials.The present work is illustrated with two special cases of the general form:the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.41972284 and 42090054)This work was also supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z005).
文摘Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.