The time-dependent resilience of an in-service aging structure provides quantitative measure of the structural ability to prepare for,adapt to,withstand and recover from disruptive events.Resilience models have been p...The time-dependent resilience of an in-service aging structure provides quantitative measure of the structural ability to prepare for,adapt to,withstand and recover from disruptive events.Resilience models have been proposed in the literature to evaluate the resilience of aging structures subjected to discrete load processes,which are,however,not applicable to handle resilience problems considering continuous load processes.In this paper,a new method is developed to evaluate the time-dependent resilience of aging structures subjected to a continuous load process.The proposed method serves as the complement of the existing resilience models addressing discrete load processes,and takes into account the aging effects of the structural resistance/capacity and the nonstationarity in loads as a result of climate change.A structure suffers from a damage state upon the occurrence of an upcrossing of the load effect with respect to the resistance/capacity,leading to the reduction of the performance function,followed by a recovery process that restores the performance.The proposed method enables the time-dependent resilience to be evaluated via a closed form solution.It is also revealed that,the proposed resilience model takes an extended form of the existing formula for upcrossing-based time-dependent reliability,thus establishing a unified framework for the two quantities.The applicability of the proposed method is demonstrated through examining the time-dependent resilience of a residential building subjected to wind load.The effects of key factors on resilience,including the nonstationarity and correlation structure of the load process,as well as the resistance/capacity deterioration scenario,are investigated through an example.In particular,the structural resilience would be overestimated if ignoring the potential impacts of climate change,which is a relatively non-conservative evaluation.展开更多
Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time ev...Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.展开更多
This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal f...This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.展开更多
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The resu...Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.展开更多
The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds...The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.展开更多
In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the st...In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the structure characteristics and mode of operation,the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process,the time-dependent reliability theory and the risk rate threshold.A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach.The example shows that operation safety risk rate is closely related to both the service period and design standard;considering the effect of time-dependent,the risk rate increases with time and the intersection of them reflects the technical service life of structures.It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.展开更多
We calculate the production of χ<sub>c</sub> and η<sub>c</sub> by the two-photon process in ultra-peripheral heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Co...We calculate the production of χ<sub>c</sub> and η<sub>c</sub> by the two-photon process in ultra-peripheral heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The differential cross section of transverse momentum distribution and rapidity distribution for (H = χ<sub>c</sub> and η<sub>c</sub>), are estimated by using the equivalent photon flux in the impact parameter space. The numerical results indicate that the study of χ<sub>c</sub> and η<sub>c</sub> in ultra-peripheral heavy ion collisions are feasible at RHIC and LHC energies.展开更多
The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-fligh...The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-flight mass spectrometry. Compared with the original band 00^0 (at 313.8 nm) of the S1 ← So transition of the 1FN monomer, a red-shifted band was observed in the 1FN dimer spectrum at about 315 nm with a relatively large linewidth, nearly 2 nm. Based on the consideration of inductive effect and ab initio calculations, this red-shifted band is assigned to the first electronic excited transition of the 1FN dimer. A possible geometric structure of the 1FN dimer is also obtained with calculations that the two 1FN molecules are combined through two hydrogen bonds which are formed between the hydrogen atom of a molecule and the fluorine atom of a neighbouring molecule. A time-dependent calculation was also carried out and the results are consistent with the experimental data.展开更多
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review...This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.展开更多
In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The prim...In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure.This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions.To investigate the mechanism of microscale mode-I ruptures,it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework.In this contribution,we derive the model from microstructures that contain periodically distributed microcracks within a porous material.The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical(HM)anisotropy at the microscale.The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation.Verification examples are presented to validate the developed model step by step.An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate,initial damage,and applied stress,on the gas migration process.Numerical examples of direct tension tests are used to demonstrate the model’s efficacy in describing localized failure characteristics.Finally,the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks.The model successfully captures the common behaviors observed in laboratory experiments,such as a sudden drop in gas injection pressure,rapid build-up of downstream gas pressure,and steady-state gas flow following gas breakthrough.展开更多
Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population tran...Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon △n=-1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results.展开更多
The cold component of large transverse momentum dilepton production via semi-coherent two- photon interaction is calculated. The cold contribution is essential to the dilepton spectra in the soft region for different ...The cold component of large transverse momentum dilepton production via semi-coherent two- photon interaction is calculated. The cold contribution is essential to the dilepton spectra in the soft region for different mass bins. The results are compared with the PHENIX experimental data at RHIC, and we find that the modification of semi-coherent two-photon processes is more evident with the rising dilepton mass bins.展开更多
In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent unc...In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.展开更多
We experimentally demonstrate the cesium electric quadrupole t ransition from the 6S_(1/2)ground st ate to the 7D_(3/2,5/2)excited state t hrough a virtu al level by using a single laser at 767 nm.The excited state en...We experimentally demonstrate the cesium electric quadrupole t ransition from the 6S_(1/2)ground st ate to the 7D_(3/2,5/2)excited state t hrough a virtu al level by using a single laser at 767 nm.The excited state energy level population is characterized by varying the laser power,the temperature of the vapor,and the polarization combinations of the laser beams.The optimized experimentai parameters are obtained for a high resolution transition interval identification.The magnetic dipole coupling constant A and elec trie quadrupole coupling constant B for the 7D_(3/2,5/2)states are precisely determined by using the hyperfine levels intervals.The results,A=7.39(0.06)MHz,B=-0.19(0.18)MHz for the 7D_(3/2)state,and A=-1.79(0.05)MHz,B=1.05(0.29)MHz for the 7D_(5/2)state,are in good agreement with the previous reported results.This work is beneficial for the determination of atomic structure information and parity non-conser vat ion,which paves the way for the field of precision measurements and atomic physics.展开更多
We developed a novel two-photon polymerization(2PP)configuration for fabrication of high-aspect three-dimensional(3D)structures,with an overall height larger than working distance of the microscope objective used for ...We developed a novel two-photon polymerization(2PP)configuration for fabrication of high-aspect three-dimensional(3D)structures,with an overall height larger than working distance of the microscope objective used for laser beam focusing into a photosensitive material.This method is based on a modified optical 2PP setup,where a microscope objective(1003 high N.A.),immersion oil and cover glass can be moved together into the photosensitive material,resulting in an effective higher and wider objective working range(WOW-2PP).The proposed technique enables the fabrication of high-aspect structures with sub-micrometer process resolution.3D structures with a height of 7 mm are demonstrated,which could hardly be built with the conventional 2PP set-up due to refractive index mismatch and laser beam disturbances.展开更多
An ultimate goal of neuroscience is to decipher the principles underlying neuronal information processing at the molecular,cellular,circuit,and system levels.The advent of miniature fluorescence microscopy has further...An ultimate goal of neuroscience is to decipher the principles underlying neuronal information processing at the molecular,cellular,circuit,and system levels.The advent of miniature fluorescence microscopy has furthered the quest by visualizing brain activities and structural dynamics in animals engaged in self-determined behaviors.In this brief review,we summarize recent advances in miniature fluorescence microscopy for neuroscience,focusing mostly on two mainstream solutions-miniature single-photon microscopy,and miniature two-photon microscopy.We discuss their technical advantages and limitations as well as unmet challenges for future improvement.Examples of preliminary applications are also presented to reflect on a new trend of brain imaging in experimental paradigms involving body movements,long and complex protocols,and even disease progression and aging.展开更多
基金supported by the Australian Government through the Australian Research Council’s Discovery Early Career Researcher Award(DE240100207).
文摘The time-dependent resilience of an in-service aging structure provides quantitative measure of the structural ability to prepare for,adapt to,withstand and recover from disruptive events.Resilience models have been proposed in the literature to evaluate the resilience of aging structures subjected to discrete load processes,which are,however,not applicable to handle resilience problems considering continuous load processes.In this paper,a new method is developed to evaluate the time-dependent resilience of aging structures subjected to a continuous load process.The proposed method serves as the complement of the existing resilience models addressing discrete load processes,and takes into account the aging effects of the structural resistance/capacity and the nonstationarity in loads as a result of climate change.A structure suffers from a damage state upon the occurrence of an upcrossing of the load effect with respect to the resistance/capacity,leading to the reduction of the performance function,followed by a recovery process that restores the performance.The proposed method enables the time-dependent resilience to be evaluated via a closed form solution.It is also revealed that,the proposed resilience model takes an extended form of the existing formula for upcrossing-based time-dependent reliability,thus establishing a unified framework for the two quantities.The applicability of the proposed method is demonstrated through examining the time-dependent resilience of a residential building subjected to wind load.The effects of key factors on resilience,including the nonstationarity and correlation structure of the load process,as well as the resistance/capacity deterioration scenario,are investigated through an example.In particular,the structural resilience would be overestimated if ignoring the potential impacts of climate change,which is a relatively non-conservative evaluation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374096 and 11405052)
文摘Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025)Hunan Provincial Natural Science Foundation (Grant Nos 06JJ4003 and 06JJ2014)the Young Scientific Research Foundation of Hunan Provincial Education Department (Grand No 04B070)
文摘This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004) and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No 03c543)
文摘Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.
文摘The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.
基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No. 51021004)
文摘In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the structure characteristics and mode of operation,the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process,the time-dependent reliability theory and the risk rate threshold.A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach.The example shows that operation safety risk rate is closely related to both the service period and design standard;considering the effect of time-dependent,the risk rate increases with time and the intersection of them reflects the technical service life of structures.It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.
文摘We calculate the production of χ<sub>c</sub> and η<sub>c</sub> by the two-photon process in ultra-peripheral heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The differential cross section of transverse momentum distribution and rapidity distribution for (H = χ<sub>c</sub> and η<sub>c</sub>), are estimated by using the equivalent photon flux in the impact parameter space. The numerical results indicate that the study of χ<sub>c</sub> and η<sub>c</sub> in ultra-peripheral heavy ion collisions are feasible at RHIC and LHC energies.
基金supported by the Doctoral Special Fund of Qufu Normal University of China
文摘The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-flight mass spectrometry. Compared with the original band 00^0 (at 313.8 nm) of the S1 ← So transition of the 1FN monomer, a red-shifted band was observed in the 1FN dimer spectrum at about 315 nm with a relatively large linewidth, nearly 2 nm. Based on the consideration of inductive effect and ab initio calculations, this red-shifted band is assigned to the first electronic excited transition of the 1FN dimer. A possible geometric structure of the 1FN dimer is also obtained with calculations that the two 1FN molecules are combined through two hydrogen bonds which are formed between the hydrogen atom of a molecule and the fluorine atom of a neighbouring molecule. A time-dependent calculation was also carried out and the results are consistent with the experimental data.
基金National Natural Science Foundation of China (50378063) and Excellent Young Teachers Program of Ministry of Education.
文摘This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12302503 and U20A20266)Scientific and Technological Research Projects in Sichuan Province,China(Grant No.2023ZYD0154).
文摘In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure.This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions.To investigate the mechanism of microscale mode-I ruptures,it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework.In this contribution,we derive the model from microstructures that contain periodically distributed microcracks within a porous material.The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical(HM)anisotropy at the microscale.The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation.Verification examples are presented to validate the developed model step by step.An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate,initial damage,and applied stress,on the gas migration process.Numerical examples of direct tension tests are used to demonstrate the model’s efficacy in describing localized failure characteristics.Finally,the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks.The model successfully captures the common behaviors observed in laboratory experiments,such as a sudden drop in gas injection pressure,rapid build-up of downstream gas pressure,and steady-state gas flow following gas breakthrough.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774039)
文摘Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon △n=-1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results.
基金Supported by National Natural Science Foundation of China (10665003, 11065010)
文摘The cold component of large transverse momentum dilepton production via semi-coherent two- photon interaction is calculated. The cold contribution is essential to the dilepton spectra in the soft region for different mass bins. The results are compared with the PHENIX experimental data at RHIC, and we find that the modification of semi-coherent two-photon processes is more evident with the rising dilepton mass bins.
基金supported by the National Natural Science Foundation of China (Nos.11572134 and 11832013).
文摘In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.
基金supported by the National Key R&D Program of China under Grant No.2017YFA0304203the NSFC under Grants Nos.61875112,61705122,91736209+1 种基金the Program for Sanjin Scholars of Shanxi Provincethe Key Research and Development Program of Shanxi Province for International Cooperation under Grant Nos.201803D421034,1331KSC.
文摘We experimentally demonstrate the cesium electric quadrupole t ransition from the 6S_(1/2)ground st ate to the 7D_(3/2,5/2)excited state t hrough a virtu al level by using a single laser at 767 nm.The excited state energy level population is characterized by varying the laser power,the temperature of the vapor,and the polarization combinations of the laser beams.The optimized experimentai parameters are obtained for a high resolution transition interval identification.The magnetic dipole coupling constant A and elec trie quadrupole coupling constant B for the 7D_(3/2,5/2)states are precisely determined by using the hyperfine levels intervals.The results,A=7.39(0.06)MHz,B=-0.19(0.18)MHz for the 7D_(3/2)state,and A=-1.79(0.05)MHz,B=1.05(0.29)MHz for the 7D_(5/2)state,are in good agreement with the previous reported results.This work is beneficial for the determination of atomic structure information and parity non-conser vat ion,which paves the way for the field of precision measurements and atomic physics.
基金This work was supported by the Deutsche Forschungsgemeinschaft(German Research Foundation)Cluster of Excellence REBIRTH and EU/FP7 project Phocam.We thank E Fadeeva and J Koch for helpful technical discussions.
文摘We developed a novel two-photon polymerization(2PP)configuration for fabrication of high-aspect three-dimensional(3D)structures,with an overall height larger than working distance of the microscope objective used for laser beam focusing into a photosensitive material.This method is based on a modified optical 2PP setup,where a microscope objective(1003 high N.A.),immersion oil and cover glass can be moved together into the photosensitive material,resulting in an effective higher and wider objective working range(WOW-2PP).The proposed technique enables the fabrication of high-aspect structures with sub-micrometer process resolution.3D structures with a height of 7 mm are demonstrated,which could hardly be built with the conventional 2PP set-up due to refractive index mismatch and laser beam disturbances.
基金We thank Dr.Zhe Zhao and Dr.Haitao Wu for helping with the experiments for Fig.2D,and Dr.Weijian Zong for discussion.This work was supported by grants from the National Natural Science Foundation of China(31327901,31570839,61975002,31830036,31821091,and 8182780030)the Major State Basic Research Program of China(2016 YFA0500400 and 2016YFA0500403)and the National Postdoctoral Program for Innovative Talents of China(BX20190011).
文摘An ultimate goal of neuroscience is to decipher the principles underlying neuronal information processing at the molecular,cellular,circuit,and system levels.The advent of miniature fluorescence microscopy has furthered the quest by visualizing brain activities and structural dynamics in animals engaged in self-determined behaviors.In this brief review,we summarize recent advances in miniature fluorescence microscopy for neuroscience,focusing mostly on two mainstream solutions-miniature single-photon microscopy,and miniature two-photon microscopy.We discuss their technical advantages and limitations as well as unmet challenges for future improvement.Examples of preliminary applications are also presented to reflect on a new trend of brain imaging in experimental paradigms involving body movements,long and complex protocols,and even disease progression and aging.