Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.T...Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.The total and partial decay widths,lifetimes,rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels.Our calculations show that the calculated tota decay widths,lifetimes and rates agree well with those extrapolated from experimental data available The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior.The very short propagation time (less.than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state inter-action between the fragments on the vibrationally deexcited adiabatic potential surface.The final state interaction between the fragments is shown to play an important role in determining the final rotational distribution This interpreta tion clearly explains the dynamical effect that the final rotational distribution shifts to the lower rotational energy levels as the initial vibrational quantum number v increases.展开更多
文摘Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.The total and partial decay widths,lifetimes,rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels.Our calculations show that the calculated tota decay widths,lifetimes and rates agree well with those extrapolated from experimental data available The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior.The very short propagation time (less.than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state inter-action between the fragments on the vibrationally deexcited adiabatic potential surface.The final state interaction between the fragments is shown to play an important role in determining the final rotational distribution This interpreta tion clearly explains the dynamical effect that the final rotational distribution shifts to the lower rotational energy levels as the initial vibrational quantum number v increases.