Experimental study was conducted to determine the effect of velocity of axial fan,outlet vent height,position,area,and aspect ratio(h/w)of ventilated enclosure on convection heat transfer.Rectangular wooden ventilated...Experimental study was conducted to determine the effect of velocity of axial fan,outlet vent height,position,area,and aspect ratio(h/w)of ventilated enclosure on convection heat transfer.Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization,and internal physical dimensions of box were 200 mm×200 mm×400 mm.Inlet vent was at bottom while outlet vents were at the side and top wall.Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure.To calculate heat transfer rates,thermocouples were attached to the inner surface of heat source with silica gel.Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer.It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number i.e.5.67E+09.While variation in outlet height at the front wall did not affect heat transfer in forced convection region.However,Nusselt number decreased to 5%by changing the outlet position from top to the front wall or by 50%reduction in outlet area during forced convection.Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux i.e.541.20 w/m^(2).展开更多
Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements ...Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin's surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the temperature values 335 K,350 K and 365 K.Dimensionless length of the enclosure including fins is ranging between 0 and 1.Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity,melting rate,enhancement ratio,and Nusselt number.It has been found that melting time(to melt 100% of the PCM) is 60.5%less in enclosure-2(with two fins of equal length) as compared to the enclosure-1,having no fins.Keeping the fin surface area equal,if the longer fin is placed below the shorter fin(enclosure-3),melting time is further decreased by 14.1% as compared to enclosure-2.However,among all the configurations,enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1.Based on the findings,it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM.Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure.Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time.展开更多
We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al2O3-water).The upper and bottom walls of the cavity have a wavy shape.The temperature o...We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al2O3-water).The upper and bottom walls of the cavity have a wavy shape.The temperature of the vertical walls is lower,the third part in the middle of the bottom wall is kept at a constant higher temperature,and the remaining parts of the bottom wall and the upper wall are thermally insulated.The magnetic field is applied under the angleγ,an opposite clockwise direction.For the numerical simulation,the finite element technique is employed.The ranges of the characteristics are as follows:the Rayleigh number(10^3≤Ra≤10^5),the Hartmann number(0≤Ha≤100),the nanoparticle hybrid concentration(ϕAl2O3,ϕCu=0,0.025,0.05),the magnetic field orientation(0≤γ≤2π),and the Prandtl number Pr,the amplitude of wavy cavity A,and the number of waviness n are fixed at Pr=7,A=0.1,and n=3,respectively.The comparison with a reported finding in the open literature is done,and the data are observed to be in very good agreement.The effects of the governing parameters on the energy transport and fluid flow parameters are studied.The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement.When the Rayleigh number is raised,the Nusselt number is increased,too.For moderate Rayleigh numbers,the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid,followed by the Al2O3-nanofluid.The nature of motion and energy transport parameters has been scrutinized.展开更多
In the present paper,unsteady natural convective heat transfer flow inside a square enclosure filled with nanofluids containing magnetic nanoparticles using nonhomogeneous dynamic model is investigated numerically.The...In the present paper,unsteady natural convective heat transfer flow inside a square enclosure filled with nanofluids containing magnetic nanoparticles using nonhomogeneous dynamic model is investigated numerically.The horizontal top wall of the enclosure is considered a colder wall and the bottom wall is maintained at uniform temperature whereas two other vertical walls of the cavity are thermally insulated.The Galerkin weighted residual finite element method has been used to solve the governing non-dimensional partial differential equations.In numerical simulations,four types of nanoparticles such as magnetite(Fe_(3)O_(4)),cobalt ferrite(CoFe_(2)O_(4)),Mn-Zn ferrite(Mn-ZnFe_(2)O_(4)),and silicon dioxide(SiO2),and three types of base fluids such as water(H_(2)O),engine oil(EO)and kerosene(Ke)have been considered.Comparisons with previously published work are performed and excellent agreement is obtained.The effects of various model parameters such as thermal Rayleigh number,nanoparticles volume fraction and nanoparticles shape factor are studied.The results show that the average Nusselt number increases as the thermal Rayleigh number and nanoparticles volume fraction intensify.The results indicate that the average Nusselt numbers are higher for the blade shape of nanoparticles.展开更多
文摘Experimental study was conducted to determine the effect of velocity of axial fan,outlet vent height,position,area,and aspect ratio(h/w)of ventilated enclosure on convection heat transfer.Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization,and internal physical dimensions of box were 200 mm×200 mm×400 mm.Inlet vent was at bottom while outlet vents were at the side and top wall.Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure.To calculate heat transfer rates,thermocouples were attached to the inner surface of heat source with silica gel.Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer.It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number i.e.5.67E+09.While variation in outlet height at the front wall did not affect heat transfer in forced convection region.However,Nusselt number decreased to 5%by changing the outlet position from top to the front wall or by 50%reduction in outlet area during forced convection.Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux i.e.541.20 w/m^(2).
文摘Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin's surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the temperature values 335 K,350 K and 365 K.Dimensionless length of the enclosure including fins is ranging between 0 and 1.Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity,melting rate,enhancement ratio,and Nusselt number.It has been found that melting time(to melt 100% of the PCM) is 60.5%less in enclosure-2(with two fins of equal length) as compared to the enclosure-1,having no fins.Keeping the fin surface area equal,if the longer fin is placed below the shorter fin(enclosure-3),melting time is further decreased by 14.1% as compared to enclosure-2.However,among all the configurations,enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1.Based on the findings,it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM.Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure.Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time.
文摘We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al2O3-water).The upper and bottom walls of the cavity have a wavy shape.The temperature of the vertical walls is lower,the third part in the middle of the bottom wall is kept at a constant higher temperature,and the remaining parts of the bottom wall and the upper wall are thermally insulated.The magnetic field is applied under the angleγ,an opposite clockwise direction.For the numerical simulation,the finite element technique is employed.The ranges of the characteristics are as follows:the Rayleigh number(10^3≤Ra≤10^5),the Hartmann number(0≤Ha≤100),the nanoparticle hybrid concentration(ϕAl2O3,ϕCu=0,0.025,0.05),the magnetic field orientation(0≤γ≤2π),and the Prandtl number Pr,the amplitude of wavy cavity A,and the number of waviness n are fixed at Pr=7,A=0.1,and n=3,respectively.The comparison with a reported finding in the open literature is done,and the data are observed to be in very good agreement.The effects of the governing parameters on the energy transport and fluid flow parameters are studied.The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement.When the Rayleigh number is raised,the Nusselt number is increased,too.For moderate Rayleigh numbers,the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid,followed by the Al2O3-nanofluid.The nature of motion and energy transport parameters has been scrutinized.
基金We would like to thank the anonymous referees for their very constructive comments for the further improvement of the paper.M.M.Rahman is grateful to the College of Science,Sultan Qaboos University,Oman for supporting through the internal grant IG/SCI/DOMS/18/10.
文摘In the present paper,unsteady natural convective heat transfer flow inside a square enclosure filled with nanofluids containing magnetic nanoparticles using nonhomogeneous dynamic model is investigated numerically.The horizontal top wall of the enclosure is considered a colder wall and the bottom wall is maintained at uniform temperature whereas two other vertical walls of the cavity are thermally insulated.The Galerkin weighted residual finite element method has been used to solve the governing non-dimensional partial differential equations.In numerical simulations,four types of nanoparticles such as magnetite(Fe_(3)O_(4)),cobalt ferrite(CoFe_(2)O_(4)),Mn-Zn ferrite(Mn-ZnFe_(2)O_(4)),and silicon dioxide(SiO2),and three types of base fluids such as water(H_(2)O),engine oil(EO)and kerosene(Ke)have been considered.Comparisons with previously published work are performed and excellent agreement is obtained.The effects of various model parameters such as thermal Rayleigh number,nanoparticles volume fraction and nanoparticles shape factor are studied.The results show that the average Nusselt number increases as the thermal Rayleigh number and nanoparticles volume fraction intensify.The results indicate that the average Nusselt numbers are higher for the blade shape of nanoparticles.