To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre...To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.展开更多
Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneousl...Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneously.There are two problems:1)the hybrid systems are difficult to extract distinguishable positioning beacon features without affecting communication performance,2)in the hybrid systems,the lost data bits in the inter-frame gap(IFG)are hard to recover,which affects positioning and communication performance.Therefore,in this article,we propose a novel VL-based hybrid positioning and communication system,named HY-PC system,to solve the above problems.First,we propose the robust T-W mapping for recognizing specific Light Emitting Diodes(LEDs),which can provide stable LED recognition accuracy without adding extra beacon data and does not decrease the communication rate.Furthermore,we also propose the novel linear block coding and bit interleaving mechanism,which can recover the lost data bits in the IFG and improve data communication performance.Finally,we use commercial off-the-shelf devices to implement our HY-PC system,extensive experimental results show that our HY-PC system can achieve consistent high-precision positioning and low-BER data communication,simultaneously.展开更多
Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear...Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus 〈0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.展开更多
This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretiz...This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.展开更多
More and more linear servo systems have been used in servo applications. Direct drive technology can greatly increase the bandwidth and the tracking accuracy. A position servo-system based on linear voice-coil motor w...More and more linear servo systems have been used in servo applications. Direct drive technology can greatly increase the bandwidth and the tracking accuracy. A position servo-system based on linear voice-coil motor was designed for one linear oscillation movement application. Besides the conventional position, speed and current control loops, the speed and acceleration feed-forward control of command position signal were also used. The experimental test proved the correctness of the design, and the system can track the given periodic sinusoid position command signal of 15Hz with high accuracy. The linear voice-coil motor is very suitable for short stroke position tracking application with high dynamic response.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
New tests for checking asymptotic stability of positive 1D continuous-time and discrete-time linear systems without and with delays and of positive 2D linear systems described by the general and the Roesser models are...New tests for checking asymptotic stability of positive 1D continuous-time and discrete-time linear systems without and with delays and of positive 2D linear systems described by the general and the Roesser models are proposed. Checking of the asymptotic stability of positive 2D linear systems is reduced to checking of suitable corresponding 1D positive linear systems. It is shown that the stability tests can be also applied to checking the asymptotic stability of fractional discrete-time linear systems with delays. Effectiveness of the tests is shown on numerical examples.展开更多
The linear motor applied in electromagnetic emission system uses a closed loop position control strategy,which needs a set of position measurement system with high reliability,high resolution and integration to achiev...The linear motor applied in electromagnetic emission system uses a closed loop position control strategy,which needs a set of position measurement system with high reliability,high resolution and integration to achieve real-time acquisition and analysis of position signals.The existing position controller is based on the simple logic chip design without memory function,and does not have the storage analysis and preprocessing function to position signals.Therefore,the system has insufficient scalability,low integration and reliability.Aiming at the improvement of the existing position measurement system,an intelligent position measurement system integrating the functions of position signals acquisition,processing and uploading,data storage and analysis is proposed in this paper,and its working principle and system composition are discussed in detail.The position,speed and acceleration obtained on the electromagnetic emission platform are in good agreement with the expected value of the system.As results,the feasibility and accuracy of the improved integrated intelligent position measurement system are verified,and the control performance of the system is also satisfied well,which can be good guidance and reference for subsequent engineering practice.展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we ...In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.展开更多
A parallel imaginary EBE (element-by-element )method for solving positive definite linear systems is presented. The EBE strategy is originally used as a sequential method[1.2], and later it is converted to a parallel...A parallel imaginary EBE (element-by-element )method for solving positive definite linear systems is presented. The EBE strategy is originally used as a sequential method[1.2], and later it is converted to a parallelmethod for solving finite element problem in solid mechanics[3]. The main contribution of this paper is to forma general parallel EBE method for the solution of anyPOsitive definite linear system through a so-called imaginary finite element technique. It is then POssible to use.finite elemental without finite element.展开更多
In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according t...In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.展开更多
In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the wh...In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).展开更多
The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown t...The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.展开更多
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exp...This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.展开更多
基金supported by the National Natural Science Foundation of China (No.52204085)the Interdisciplinary Research Project for Young Teachers of USTB,Fundamental Research Funds for the Central Universities (No.FRF-IDRY-21-006).
文摘To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+2 种基金SYLU introduced high-level talents scientific research support planChongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneously.There are two problems:1)the hybrid systems are difficult to extract distinguishable positioning beacon features without affecting communication performance,2)in the hybrid systems,the lost data bits in the inter-frame gap(IFG)are hard to recover,which affects positioning and communication performance.Therefore,in this article,we propose a novel VL-based hybrid positioning and communication system,named HY-PC system,to solve the above problems.First,we propose the robust T-W mapping for recognizing specific Light Emitting Diodes(LEDs),which can provide stable LED recognition accuracy without adding extra beacon data and does not decrease the communication rate.Furthermore,we also propose the novel linear block coding and bit interleaving mechanism,which can recover the lost data bits in the IFG and improve data communication performance.Finally,we use commercial off-the-shelf devices to implement our HY-PC system,extensive experimental results show that our HY-PC system can achieve consistent high-precision positioning and low-BER data communication,simultaneously.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2015CB057500)National Natural Science Foundation of China(Grant Nos.50305035,51575259)Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,China(Grant No.0315K01)
文摘Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus 〈0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.
基金supported by National Natural Science Foundation of China (61703288,61603079,61873174)
文摘This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.
文摘More and more linear servo systems have been used in servo applications. Direct drive technology can greatly increase the bandwidth and the tracking accuracy. A position servo-system based on linear voice-coil motor was designed for one linear oscillation movement application. Besides the conventional position, speed and current control loops, the speed and acceleration feed-forward control of command position signal were also used. The experimental test proved the correctness of the design, and the system can track the given periodic sinusoid position command signal of 15Hz with high accuracy. The linear voice-coil motor is very suitable for short stroke position tracking application with high dynamic response.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
文摘New tests for checking asymptotic stability of positive 1D continuous-time and discrete-time linear systems without and with delays and of positive 2D linear systems described by the general and the Roesser models are proposed. Checking of the asymptotic stability of positive 2D linear systems is reduced to checking of suitable corresponding 1D positive linear systems. It is shown that the stability tests can be also applied to checking the asymptotic stability of fractional discrete-time linear systems with delays. Effectiveness of the tests is shown on numerical examples.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grant 51507182 and 51477178.
文摘The linear motor applied in electromagnetic emission system uses a closed loop position control strategy,which needs a set of position measurement system with high reliability,high resolution and integration to achieve real-time acquisition and analysis of position signals.The existing position controller is based on the simple logic chip design without memory function,and does not have the storage analysis and preprocessing function to position signals.Therefore,the system has insufficient scalability,low integration and reliability.Aiming at the improvement of the existing position measurement system,an intelligent position measurement system integrating the functions of position signals acquisition,processing and uploading,data storage and analysis is proposed in this paper,and its working principle and system composition are discussed in detail.The position,speed and acceleration obtained on the electromagnetic emission platform are in good agreement with the expected value of the system.As results,the feasibility and accuracy of the improved integrated intelligent position measurement system are verified,and the control performance of the system is also satisfied well,which can be good guidance and reference for subsequent engineering practice.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
文摘In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.
文摘A parallel imaginary EBE (element-by-element )method for solving positive definite linear systems is presented. The EBE strategy is originally used as a sequential method[1.2], and later it is converted to a parallelmethod for solving finite element problem in solid mechanics[3]. The main contribution of this paper is to forma general parallel EBE method for the solution of anyPOsitive definite linear system through a so-called imaginary finite element technique. It is then POssible to use.finite elemental without finite element.
基金partially supported by the National Natural Science Foun-dation of China(No.62071389).
文摘In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.
文摘In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).
文摘The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.
基金This research is supported by the National Natural Science Foundation of China(l0171036) and the Natural Science Foundation of South-Central University For Nationalities(YZZ03001).
文摘This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.