期刊文献+
共找到3,316篇文章
< 1 2 166 >
每页显示 20 50 100
Early identification of scientific breakthroughs through outlier analysis based on research entities
1
作者 Yang Zhao Mengting Zhang +1 位作者 Xiaoli Chen Zhixiong Zhang 《Journal of Data and Information Science》 CSCD 2024年第4期90-109,共20页
Purpose:To address the“anomalies”that occur when scientific breakthroughs emerge,this study focuses on identifying early signs and nascent stages of breakthrough innovations from the perspective of outliers,aiming t... Purpose:To address the“anomalies”that occur when scientific breakthroughs emerge,this study focuses on identifying early signs and nascent stages of breakthrough innovations from the perspective of outliers,aiming to achieve early identification of scientific breakthroughs in papers.Design/methodology/approach:This study utilizes semantic technology to extract research entities from the titles and abstracts of papers to represent each paper’s research content.Outlier detection methods are then employed to measure and analyze the anomalies in breakthrough papers during their early stages.The development and evolution process are traced using literature time tags.Finally,a case study is conducted using the key publications of the 2021 Nobel Prize laureates in Physiology or Medicine.Findings:Through manual analysis of all identified outlier papers,the effectiveness of the proposed method for early identifying potential scientific breakthroughs is verified.Research limitations:The study’s applicability has only been empirically tested in the biomedical field.More data from various fields are needed to validate the robustness and generalizability of the method.Practical implications:This study provides a valuable supplement to current methods for early identification of scientific breakthroughs,effectively supporting technological intelligence decision-making and services.Originality/value:The study introduces a novel approach to early identification of scientific breakthroughs by leveraging outlier analysis of research entities,offering a more sensitive,precise,and fine-grained alternative method compared to traditional citation-based evaluations,which enhances the ability to identify nascent breakthrough innovations. 展开更多
关键词 Scientific breakthroughs outlier analysis Research entities
下载PDF
A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction
2
作者 Varada Rajkumar Kukkala Surapaneni Phani Praveen +1 位作者 Naga Satya Koti Mani Kumar Tirumanadham Parvathaneni Naga Srinivasu 《Computer Systems Science & Engineering》 2024年第5期1085-1112,共28页
This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-S... This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-Score incorporated with GreyWolf Optimization(GWO)as well as Interquartile Range(IQR)coupled with Ant Colony Optimization(ACO).Using a performance index,it is shown that when compared with the Z-Score and GWO with AdaBoost,the IQR and ACO,with AdaBoost are not very accurate(89.0%vs.86.0%)and less discriminative(Area Under the Curve(AUC)score of 93.0%vs.91.0%).The Z-Score and GWO methods also outperformed the others in terms of precision,scoring 89.0%;and the recall was also found to be satisfactory,scoring 90.0%.Thus,the paper helps to reveal various specific benefits and drawbacks associated with different outlier detection and feature selection techniques,which can be important to consider in further improving various aspects of diagnostics in cardiovascular health.Collectively,these findings can enhance the knowledge of heart disease prediction and patient treatment using enhanced and innovativemachine learning(ML)techniques.These findings when combined improve patient therapy knowledge and cardiac disease prediction through the use of cutting-edge and improved machine learning approaches.This work lays the groundwork for more precise diagnosis models by highlighting the benefits of combining multiple optimization methodologies.Future studies should focus on maximizing patient outcomes and model efficacy through research on these combinations. 展开更多
关键词 Grey wolf optimization ant colony optimization Z-SCORE interquartile range(IQR) ADABOOST outlier
下载PDF
Changepoint Detection with Outliers Based on RWPCA
3
作者 Xin Zhang Sanzhi Shi Yuting Guo 《Journal of Applied Mathematics and Physics》 2024年第7期2634-2651,共18页
Changepoint detection faces challenges when outlier data are present. This paper proposes a multivariate changepoint detection method which is based on the robust WPCA projection direction and the robust RFPOP method,... Changepoint detection faces challenges when outlier data are present. This paper proposes a multivariate changepoint detection method which is based on the robust WPCA projection direction and the robust RFPOP method, RWPCA-RFPOP method. Our method is double robust which is suitable for detecting mean changepoints in multivariate normal data with high correlations between variables that include outliers. Simulation results demonstrate that our method provides strong guarantees on both the number and location of changepoints in the presence of outliers. Finally, our method is well applied in an ACGH dataset. 展开更多
关键词 RWPCA-RFPOP Double Robust outlier Detection Biweight Loss
下载PDF
A Study of Detection of Outliers for Working and Non-Working Days Air Quality in Kolkata, India: A Case Study
4
作者 Mohammad Ahmad Weihu Cheng +1 位作者 Zhao Xu Abdul Kalam 《Journal of Environmental Protection》 2023年第8期685-709,共22页
A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberran... A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data. 展开更多
关键词 Statistical Process Control Functional Data Analysis Fuzzy C Means outlierS Air Quality
下载PDF
CLOF Based Outlier Detection Algorithm of Temperature Data for Ethylene Cracking Furnace
5
作者 Yidan Xin Shaolin Hu +1 位作者 Wenzhuo Chen He Song 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第4期50-57,共8页
The flue temperature is one of the important indicators to characterize the combustion state of an ethylene cracker furnace,the outliers of temperature data can lead to the false alarm.Conventional outlier detection a... The flue temperature is one of the important indicators to characterize the combustion state of an ethylene cracker furnace,the outliers of temperature data can lead to the false alarm.Conventional outlier detection algorithms such as the Isolation Forest algorithm and 3-sigma principle cannot detect the outliers accurately.In order to improve the detection accuracy and reduce the computational complexity,an outlier detection algorithm for flue temperature data based on the CLOF(Clipping Local Outlier Factor,CLOF)algorithm is proposed.The algorithm preprocesses the normalized data using the cluster pruning algorithm,and realizes the high accuracy and high efficiency outlier detection in the outliers candidate set.Using the flue temperature data of an ethylene cracking furnace in a petrochemical plant,the main parameters of the CLOF algorithm are selected according to the experimental results,and the outlier detection effect of the Isolation Forest algorithm,the 3-sigma principle,the conventional LOF algorithm and the CLOF algorithm are compared and analyzed.The results show that the appropriate clipping coefficient in the CLOF algorithm can significantly improve the detection efficiency and detection accuracy.Compared with the outlier detection results of the Isolation Forest algorithm and 3-sigma principle,the accuracy of the CLOF detection results is increased,and the amount of data calculation is significantly reduced. 展开更多
关键词 temperature data outlier detection ethylene cracker furnace CLUSTERING data clipping LOF
下载PDF
A Novel Outlier Detection with Feature Selection Enabled Streaming Data Classification
6
作者 R.Rajakumar S.Sathiya Devi 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2101-2116,共16页
Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approach... Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches. 展开更多
关键词 Streaming data classification outlier removal feature selection machine learning metaheuristics
下载PDF
Outliers rejection in similar image matching
7
作者 Qingqing CHEN Junfeng YAO 《Virtual Reality & Intelligent Hardware》 2023年第2期171-187,共17页
Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.... Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.Because of their local similarity,when image pairs contain comparable patterns but feature pairs are positioned differently,incorrect recognition can occur as global motion consistency is disregarded.Methods This study proposes an image-matching filtering algorithm based on global motion consistency.It can be used as a subsequent matching filter for the initial matching results generated by other matching algorithms based on the principle of motion smoothness.A particular matching algorithm can first be used to perform the initial matching;then,the rotation and movement information of the global feature vectors are combined to effectively identify outlier matches.The principle is that if the matching result is accurate,the feature vectors formed by any matched point should have similar rotation angles and moving distances.Thus,global motion direction and global motion distance consistencies were used to reject outliers caused by similar patterns in different locations.Results Four datasets were used to test the effectiveness of the proposed method.Three datasets with similar patterns in different locations were used to test the results for similar images that could easily be incorrectly matched by other algorithms,and one commonly used dataset was used to test the results for the general image-matching problem.The experimental results suggest that the proposed method is more accurate than other state-of-the-art algorithms in identifying mismatches in the initial matching set.Conclusions The proposed outlier rejection matching method can significantly improve the matching accuracy for similar images with locally similar feature pairs in different locations and can provide more accurate matching results for subsequent computer vision tasks. 展开更多
关键词 Feature matching outlier removal Motion consistency Similar image matching Global structures
下载PDF
Outlier Detection of Air Quality for Two Indian Urban Cities Using Functional Data Analysis
8
作者 Mohammad Ahmad Weihu Cheng +1 位作者 Zhao Xu Abdul Kalam 《Open Journal of Air Pollution》 2023年第3期79-91,共13页
Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities tu... Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well. 展开更多
关键词 Functional Data Analysis outlierS Air Quality Gas Emission Classical Statistics
下载PDF
基于期望核密度离群因子的离群点检测算法
9
作者 张忠平 孙光旭 +2 位作者 姚春辰 刘硕 齐文旭 《高技术通讯》 CAS 北大核心 2024年第2期187-198,共12页
针对基于密度的离群点检测方法在不同分布的数据集上检测精度低的问题,提出了一种基于期望核密度离群因子的离群点检测算法。首先,引入k近邻和反向k近邻扩展邻域空间(ENS)代替传统的k邻域范围,更加全面地考虑数据对象的邻域信息;其次,... 针对基于密度的离群点检测方法在不同分布的数据集上检测精度低的问题,提出了一种基于期望核密度离群因子的离群点检测算法。首先,引入k近邻和反向k近邻扩展邻域空间(ENS)代替传统的k邻域范围,更加全面地考虑数据对象的邻域信息;其次,在传统核密度估计(KDE)方法的基础上引入多元高斯函数,在扩展邻域空间内估计数据对象的密度,同时借鉴自适应核带宽的思想,更好地适应不同数据集的数据分布;然后,给出期望距离的概念,进一步区分局部离群点和位于低密度区域的正常点;最后,定义了期望核密度离群因子刻画数据对象离群程度。在人工数据集和真实数据集上对所提算法进行实验验证,并与部分传统算法进行对比,验证了所提算法的有效性。 展开更多
关键词 数据挖掘 离群点 核密度估计(KDE) 期望距离 期望核密度离群因子
下载PDF
基于贡献度和数据有效性检验的共识机制
10
作者 时小虎 姚鑫 +1 位作者 孙延风 马德印 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期160-169,178,共11页
将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验... 将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验证领导者选举机制,保证记账权分配的随机性及可验证性.进一步引入密度峰值算法对交易数据有效性进行校验,对打包区块的正确性达成共识.最后将所提出的共识机制应用于梅花鹿分布式养殖场场景,结果验证了密度峰值算法在交易数据有效性检测任务中的准确性和高效性.出块时延分析和安全性分析表明,所提出的共识机制能够满足数据有效性验证的实时性需求,能耗较小,具有很强的灾备能力. 展开更多
关键词 区块链 共识机制 离群点检测 分布式数据维护 溯源
下载PDF
基于5G移动通信技术在医疗设备管理中的研究 被引量:1
11
作者 吴风浪 《中国医疗设备》 2024年第1期1-5,43,共6页
目的 为解决现有医疗设备通信技术滞后、设备管理能力欠佳等问题,提出一种基于5G移动通信技术在医疗设备管理中的方法,以提高医疗设备之间的数据信息通信能力。方法 基于5G通信技术,融合安全传输层协议,对传输数据进行加密;结合WebRTC技... 目的 为解决现有医疗设备通信技术滞后、设备管理能力欠佳等问题,提出一种基于5G移动通信技术在医疗设备管理中的方法,以提高医疗设备之间的数据信息通信能力。方法 基于5G通信技术,融合安全传输层协议,对传输数据进行加密;结合WebRTC技术,实现远程视频通话和会诊;使用离群检测算法对数据进行处理,提高通信数据的信息检索能力;加入网络波动检测模块,降低在远程访问中网络波动带来的影响。结果 通过记录某医疗机构某年1—10月的远程视频次数及网络波动次数和触发网络加速模块的次数可知,本系统将目标特征误差保持在2%以下,在系统运行过程中非常稳定且适用。结论 本系统大大减轻了系统主机的压力,具有较高的工作效率及较低的误差率和波动率,可达到远程医用和远程急救的要求。 展开更多
关键词 远程急救 WebRTC技术 5G通信技术 安全传输层协议 离群检测
下载PDF
基于映射距离比离群因子的离群点检测算法
12
作者 张忠平 姚春辰 +3 位作者 孙光旭 刘硕 张睿博 魏永辉 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1719-1732,共14页
针对基于邻近性的离群点检测方法需要花费大量时间过滤正常点,并且在检测全局离群点时难以检测出局部离群点的问题,提出一种基于映射距离比离群因子离群点检测(MDROF)算法。首先,为了减少正常点在检测过程中的时间消耗,给出了差异相似... 针对基于邻近性的离群点检测方法需要花费大量时间过滤正常点,并且在检测全局离群点时难以检测出局部离群点的问题,提出一种基于映射距离比离群因子离群点检测(MDROF)算法。首先,为了减少正常点在检测过程中的时间消耗,给出了差异相似度的概念,通过定义差异相似度剪枝因子过滤掉数据集中的大部分正常点。其次,定义映射k距离,通过映射距离与可达距离的比值刻画数据对象的局部离群程度,通过可达密度刻画数据对象的全局离群程度。最后,结合数据对象相互近邻点的平均排位定义映射距离比离群因子来检测离群点。在人工数据集以及真实数据集上分别对该算法与其他经典的离群点检测算法在精确率、AUC值和离群点发现曲线上进行实验对比分析。实验结果证明MDROF算法在离群点检测的准确性和稳定性上明显优于对比算法。 展开更多
关键词 数据挖掘 离群点检测 差异相似度剪枝 映射k距离 映射距离比
下载PDF
基于自适应高斯渐进滤波的工程车GNSS/INS紧组合定位
13
作者 张文安 沈嘉俊 +2 位作者 史秀纺 杨旭升 王军 《传感技术学报》 CAS CSCD 北大核心 2024年第4期620-628,共9页
研究了量测野值影响下的工程车GNSS/INS紧组合定位问题,提出了一种基于自适应高斯渐进滤波的车辆定位方法。首先,为降低量测野值对滤波器的破坏风险,利用假设检验方法对量测野值进行检测和剔除;其次,对于野值漏检测引起的定位性能下降... 研究了量测野值影响下的工程车GNSS/INS紧组合定位问题,提出了一种基于自适应高斯渐进滤波的车辆定位方法。首先,为降低量测野值对滤波器的破坏风险,利用假设检验方法对量测野值进行检测和剔除;其次,对于野值漏检测引起的定位性能下降的问题,设计了自适应的高斯渐进滤波方法来补偿量测的不确定性;特别地,利用线性化误差与系统估计误差的变化关系,对渐进量测更新方式进行了改进,从而实现对线性化误差的间接补偿。最后,通过工程车GNSS/INS紧组合定位实验进行结果分析,验证了所提方法的可靠性和优越性。 展开更多
关键词 GNSS/INS紧组合 工程车 量测野值 高斯渐进
下载PDF
启发式k-means聚类算法的改进研究
14
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 K-MEANS 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
颠覆性技术识别与扩散趋势预测:概念模型与实证分析
15
作者 王康 陈悦 +1 位作者 王玉奇 韩盟 《情报学报》 CSSCI CSCD 北大核心 2024年第8期899-913,共15页
发现并判断技术颠覆性潜力和扩散趋势,能够为国家和政府科技资源分配与未来产业的超前布局提供精准决策依据。首先,本文构建了颠覆性技术识别与扩散趋势预测的概念模型;其次,依据此模型以3D打印领域为例,从离群性和影响力维度识别颠覆... 发现并判断技术颠覆性潜力和扩散趋势,能够为国家和政府科技资源分配与未来产业的超前布局提供精准决策依据。首先,本文构建了颠覆性技术识别与扩散趋势预测的概念模型;其次,依据此模型以3D打印领域为例,从离群性和影响力维度识别颠覆性专利,提取颠覆性技术;最后,基于识别的颠覆性专利的施引专利,将自动标签和战略坐标应用于技术主题扩散路径绘制中,提出一种新的多位态自动标签技术主题扩散趋势预测方法,用于揭示核心、边缘、成熟、新兴等位态主题之间的动态扩散关系。研究发现,离群专利与颠覆性技术之间存在共生、匹配和关联的内在逻辑关系,从离群专利视角识别颠覆性技术具有可行性;1955—2017年,3D打印领域的颠覆性技术主要分布在高端装备制造、生物医药和材料3大方向,突出的技术领域是运输、发动机/泵/涡轮机、生物材料分析、半导体、环境技术;多位态自动标签技术主题扩散趋势预测结果显示,生物医疗3D打印技术主题未来发展潜力巨大。 展开更多
关键词 颠覆性技术识别 颠覆性技术扩散 离群专利 概念模型 3D打印
下载PDF
高校高价值专利技术机会识别研究——以“生成式人工智能”领域为例
16
作者 冉从敬 李旺 黄文俊 《信息资源管理学报》 CSSCI 2024年第4期103-116,共14页
提出一种高校高价值专利技术机会识别方法,使用主题建模、突变级数法、机器学习与离群值检测算法,在评估出高校高价值专利的基础上,进一步识别出具有潜在技术机会的技术主题与专利技术。以“生成式人工智能”领域为例进行实证,研究结果... 提出一种高校高价值专利技术机会识别方法,使用主题建模、突变级数法、机器学习与离群值检测算法,在评估出高校高价值专利的基础上,进一步识别出具有潜在技术机会的技术主题与专利技术。以“生成式人工智能”领域为例进行实证,研究结果表明:“生成式人工智能”领域的潜在技术主题集中在深度学习、神经网络与机器学习等前沿领域,AI影像、AI诊疗等技术为该领域的潜在技术机会,且上述技术均有国家相关政策大力支撑。本研究方法突破了单一技术机会识别方法识别结果针对性不强、识别专利价值不大、识别结果形式较为单一等核心问题,相关识别结果可以为高校技术转移、技术研发与技术创新提供决策支撑。 展开更多
关键词 高价值专利 专利价值评估 技术机会识别 突变级数法 离群值检测算法
下载PDF
基于CART决策树的分布式数据离群点检测算法
17
作者 朱华 乔勇进 董国钢 《现代电子技术》 北大核心 2024年第16期157-162,共6页
在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环... 在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环境下高效地发现离群点。因此,提出一种基于CART决策树的分布式数据离群点检测算法。在构建CART决策树时,使用类间中心距离作为分裂准则,根据分离类别对训练数据进行分类,从而确定数据的类型。在上述基础上,考虑到离群点的分布模式与其周围数据对象不同,使用空间局部偏离因子(SLDF)对空间内各个数据对象之间的离群程度展开度量,同时在高维空间内展开网格划分,引入SLDF算法检测剩余离群点集,最终实现分布式数据离群点检测。实验结果表明,所提方法的离散点检测错误率在0.010以内,可以更加精准地实现分布式数据离群点检测,具有良好的检测性能。 展开更多
关键词 CART决策树 分布式数据 离群点检测 类间距离 数据分类 空间局部偏离因子
下载PDF
基于离群点检测和自适应参数的三支DBSCAN算法
18
作者 李志聪 孙旭阳 《计算机应用研究》 CSCD 北大核心 2024年第7期1999-2004,共6页
针对经典的DBSCAN算法存在难以确定全局最优参数和误判离群点的问题,该算法首先从选择最优参数角度出发,通过数据集的分布特征生成Eps和MinPts列表,将两个列表中的参数进行全组合操作,把不同的参数组合依次进行聚类,从而寻找准确率最高... 针对经典的DBSCAN算法存在难以确定全局最优参数和误判离群点的问题,该算法首先从选择最优参数角度出发,通过数据集的分布特征生成Eps和MinPts列表,将两个列表中的参数进行全组合操作,把不同的参数组合依次进行聚类,从而寻找准确率最高点对应的参数。最后从离群点角度出发,将三支决策思想与离群点检测LOF算法进行结合。该算法与多种聚类算法进行效果对比分析,结果表明该算法能够全自动化选择全局最优参数,并提高聚类算法的准确性。 展开更多
关键词 DBSCAN算法 三支聚类 自适应参数 离群点检测
下载PDF
地铁盾构下穿高铁站房安全监测
19
作者 龙四春 唐敏轩 +3 位作者 周健 赖咸根 张立亚 熊朝晖 《测绘工程》 2024年第3期67-74,共8页
针对地铁盾构下穿地表建筑物形变规律监测和复杂工况环境下地基SAR数据处理等问题,提出利用广义离群检验算法对地基SAR一阶差分相位数据进行粗差探测与剔除,联合地基SAR与测量机器人监测数据对地铁盾构下穿湘潭北站高铁站房进行形变监... 针对地铁盾构下穿地表建筑物形变规律监测和复杂工况环境下地基SAR数据处理等问题,提出利用广义离群检验算法对地基SAR一阶差分相位数据进行粗差探测与剔除,联合地基SAR与测量机器人监测数据对地铁盾构下穿湘潭北站高铁站房进行形变监测与安全分析,并基于力学模型和Flac3D软件进行数值模拟,较好的得出盾构下穿高铁站房各阶段形变特征与规律。结果表明,广义离群检验算法有效解决了复杂工况环境下地基SAR数据遮挡问题,联合测量机器人数据得到与数值模型变形解算结果一致,且符合施工过程物理力学客观规律,基本实现盾构下穿地表建筑物安全监测,为类似地铁盾构安全施工检测提供参考。 展开更多
关键词 地基SAR 盾构下穿 安全监测 广义离群检验算法 形变规律
下载PDF
基于多元离群点检测的动态目标去除SLAM方法
20
作者 王磊 张茗宇 +2 位作者 潘明然 张永鑫 郝涌汀 《探测与控制学报》 CSCD 北大核心 2024年第5期64-70,共7页
考虑动态环境下的目标移动对同步定位与建图(SLAM)位姿估计精度的影响,提出一种通过稠密光流计算像素运动并经过离群点检测的动态目标SLAM算法。采用稠密光流法计算图像序列的每个像素的运动信息进行动态目标判断,利用离群点检测对动态... 考虑动态环境下的目标移动对同步定位与建图(SLAM)位姿估计精度的影响,提出一种通过稠密光流计算像素运动并经过离群点检测的动态目标SLAM算法。采用稠密光流法计算图像序列的每个像素的运动信息进行动态目标判断,利用离群点检测对动态目标进行提取,通过均值滤波对动态目标进行模糊剔除,消除动态目标对SLAM精度的影响。在TUM数据集与定制数据集上进行实验,在TUM数据集测试中,与基于特征点法的Orb-slam3标杆算法进行对比分析,在动态目标影响条件下,该算法得到的轨迹误差降低43.25%;搭建开放式四旋翼无人机测试系统,在定制数据集中,进行飞行试验,得到的估计轨迹位置误差控制在1 m内,满足使用场景要求,进一步验证了算法的有效性。 展开更多
关键词 同步定位与建图 稠密光流 位姿估计 动态目标 离群点检测
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部