Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu...Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge...An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.展开更多
A new method that uses time-domain response data under random loading is proposed for detecting damage to the structural elements of offshore platforms. In our study, a time series model with a fitting order was first...A new method that uses time-domain response data under random loading is proposed for detecting damage to the structural elements of offshore platforms. In our study, a time series model with a fitting order was first constructed using the time-domain of noise data. A sensitivity matrix consisting of the first differential of the autoregressive coefficients of the time series models with respect to the stiffness of structural elements was then obtained based on time-domain response data. Locations and severity of damage may then be estimated by solving the damage vector whose components express the degrees of damage to the structural elements. A unique aspect of this detection method is that it requires acceleration history data from only one or a few sensors. This makes it feasible for a limited array of sensors to obtain sufficient data. The efficiency and reliability of the proposed method was demonstrated by applying it to a simplified offshore platform with damage to one element. Numerical simulations show that the use of a few sensors’ acceleration history data, when compared with recorded levels of noise, is capable of detecting damage efficiently. An increase in the number of sensors helps improve the diagnosis success rate.展开更多
Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular w...Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.展开更多
All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced ti...All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.展开更多
The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Th...The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Then using principal component analysis (PCA),the variable space dimensions of damage identification matrix can be reduced,and original data characters of FRFs can be analyzed and extracted from lower dimension variable space. Thus truss damages can be identified using the multivariate control chart of first several order principal components which contain almost all of original data information. Without the need for modal parameters,the method avoids the errors of modal fitting. In order to validate the reliability of the method,a whole size truss was tested with six types of damage case concerning single or two element damages. The experimental result shows that the proposed method is straightforward and reliable for truss damage identification. Especially,the method has good applicability for the truss under noisy environment and non-linear cases.展开更多
The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR)is numerically investigated based on a three-dimensional(3 D)time-domain finite element method(FEM).The govern...The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR)is numerically investigated based on a three-dimensional(3 D)time-domain finite element method(FEM).The governing equation considering internal flow is established in the global coordinate system.The whole SWR consists of three segments:the decline segment,buoyancy segment and hang-off segment,in which the buoyancy segment is wrapped by several buoyancy modules in the middle section,leading to the arch bend and sag bend.A Newmark-β iterative scheme is adopted for the accurate analysis to solve the governing equation and update the dynamic response at each time step.The proposed method is verified through the published results for the dynamic response of steel catenary riser(SCR)and static configuration of steel lazy wave riser(SLWR).Simulations are executed to study the influence of wave height,current velocity/direction,internal flow density/velocity and top-end pressure on the tension,configuration and bending moment of the SWR.The results indicate that the influence of the current on the configuration and mechanical behavior of the SWR is greater than that of the wave,especially in the middle section.With increasing current velocity,the suspending height of the middle section drops,meanwhile,its bending moment decreases accordingly,but the tension increases significantly.For a fixed external load,the increasing internal flow density induces the amplification of the tension at the hang-off segment and the mitigation at the decline segment,while the opposite trend occurs at the bending moment.展开更多
The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green fun...The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green function that satisfies the free water surface condition in the finite water depth, and is solved by the boundary element method. The motion equations of the tunnel element are solved by the fourth order Runge-Kutta method. A comparison between the computed and measured results reveals that the numerical model can effectively simulate the motion responses of the tunnel element and the cable tensions when the motions of the tunnel element are within some limit. Taking the tunnel element of 100 m in length, 15 m in width and 10 m in height as an example, the computational results of the motion responses of the tunnel element and the cable tensions in different immersing depths are obtained under different incident wave conditions.展开更多
基金Major Program of the National Natural Science Foundation of China under Grant No.52192675 and the 111 Project of China under Grant No.D21001。
文摘Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金supported by Chinese National Programs for Fundamental Research and Development(No.2012CB416605)the National Natural Science Foundation of China(No.41174090)Development Project of National Key Scientific Equipment(No.ZDYZ2012-1-05-04)
文摘An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.
基金the National Natural Science Foundation of China under Grant No. 50479050
文摘A new method that uses time-domain response data under random loading is proposed for detecting damage to the structural elements of offshore platforms. In our study, a time series model with a fitting order was first constructed using the time-domain of noise data. A sensitivity matrix consisting of the first differential of the autoregressive coefficients of the time series models with respect to the stiffness of structural elements was then obtained based on time-domain response data. Locations and severity of damage may then be estimated by solving the damage vector whose components express the degrees of damage to the structural elements. A unique aspect of this detection method is that it requires acceleration history data from only one or a few sensors. This makes it feasible for a limited array of sensors to obtain sufficient data. The efficiency and reliability of the proposed method was demonstrated by applying it to a simplified offshore platform with damage to one element. Numerical simulations show that the use of a few sensors’ acceleration history data, when compared with recorded levels of noise, is capable of detecting damage efficiently. An increase in the number of sensors helps improve the diagnosis success rate.
基金the National Key R&D Program of China (Grant No.2016YFE0200100)the National Natural Science Foundation of China (Grant Nos.51490672 and 51479026).
文摘Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.
文摘All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.
基金the Foundation of Henan Province Key Technology R and D Program(Grant No.0423033700).
文摘The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Then using principal component analysis (PCA),the variable space dimensions of damage identification matrix can be reduced,and original data characters of FRFs can be analyzed and extracted from lower dimension variable space. Thus truss damages can be identified using the multivariate control chart of first several order principal components which contain almost all of original data information. Without the need for modal parameters,the method avoids the errors of modal fitting. In order to validate the reliability of the method,a whole size truss was tested with six types of damage case concerning single or two element damages. The experimental result shows that the proposed method is straightforward and reliable for truss damage identification. Especially,the method has good applicability for the truss under noisy environment and non-linear cases.
基金financially supported by the National Natural Science Foundation of China(Grant No.51861130358,51609109)the State Key Laboratory of Ocean Engineering,China(Shanghai Jiao Tong University)(Grant No.1905)+1 种基金the Newton Advanced Fellowships of the Royal Societythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_3153)。
文摘The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR)is numerically investigated based on a three-dimensional(3 D)time-domain finite element method(FEM).The governing equation considering internal flow is established in the global coordinate system.The whole SWR consists of three segments:the decline segment,buoyancy segment and hang-off segment,in which the buoyancy segment is wrapped by several buoyancy modules in the middle section,leading to the arch bend and sag bend.A Newmark-β iterative scheme is adopted for the accurate analysis to solve the governing equation and update the dynamic response at each time step.The proposed method is verified through the published results for the dynamic response of steel catenary riser(SCR)and static configuration of steel lazy wave riser(SLWR).Simulations are executed to study the influence of wave height,current velocity/direction,internal flow density/velocity and top-end pressure on the tension,configuration and bending moment of the SWR.The results indicate that the influence of the current on the configuration and mechanical behavior of the SWR is greater than that of the wave,especially in the middle section.With increasing current velocity,the suspending height of the middle section drops,meanwhile,its bending moment decreases accordingly,but the tension increases significantly.For a fixed external load,the increasing internal flow density induces the amplification of the tension at the hang-off segment and the mitigation at the decline segment,while the opposite trend occurs at the bending moment.
基金supported by the National Natural Science Foundation of China (Grant No.50439010)the Key Project of the Ministry of Education of China (Grant No.305003)
文摘The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green function that satisfies the free water surface condition in the finite water depth, and is solved by the boundary element method. The motion equations of the tunnel element are solved by the fourth order Runge-Kutta method. A comparison between the computed and measured results reveals that the numerical model can effectively simulate the motion responses of the tunnel element and the cable tensions when the motions of the tunnel element are within some limit. Taking the tunnel element of 100 m in length, 15 m in width and 10 m in height as an example, the computational results of the motion responses of the tunnel element and the cable tensions in different immersing depths are obtained under different incident wave conditions.