Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and se...For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.展开更多
Spherical Ag nanoparticles(AgNPs) with a diameter of 20 nm or smaller were biologically synthesized using algae Parachlorella kessleri. The effect of storage conditions on the long-term stability of AgNPs was investig...Spherical Ag nanoparticles(AgNPs) with a diameter of 20 nm or smaller were biologically synthesized using algae Parachlorella kessleri. The effect of storage conditions on the long-term stability of AgNPs was investigated. UV/Vis spectrophotometry, transmission electron microscopy, and dynamic light scattering measurements revealed that the long-term stability of AgNPs was influenced by light and temperature conditions. The most significant loss of stability was observed for the AgNPs stored in daylight at room temperature. The AgNPs stored under these conditions began to lose their stability after approximately 30 d; after 100 d, a substantial amount of agglomerated particles settled to the bottom of the Erlenmeyer flask. The AgNPs stored in the dark at room temperature exhibited better long-term stability. Weak particle agglomeration began at approximately the 100 th day. The AgNPs stored in the dark at about 5℃ exhibited the best long-term stability; the AgNPs stored under such conditions remained spherical, with a narrow size distribution, and stable(no agglomeration) even after 6 months. Zeta-potential measurements confirmed better dispersity and stability of AgNPs stored under these conditions.展开更多
In this paper, global asymptotic stability for cellular neural networks with time delay is discussed using a novel Liapunov function. Some novel sufficient conditions for global asymptotic stability are obtained. Thos...In this paper, global asymptotic stability for cellular neural networks with time delay is discussed using a novel Liapunov function. Some novel sufficient conditions for global asymptotic stability are obtained. Those results are simple and practical than those given by P. P. Civalleri, et al., and have a leading importance to design cellular neural networks with time delay.展开更多
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a...Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.展开更多
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala...The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.展开更多
Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signa...Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signal for paleoenvironmet research. Simultaneously, as a new type of magnetic material, it causes attention. Because Fe3S4 generally exists as an unstable intermediate, it is stringent in preparation conditions. Although some scholars have conducted on the synthesis experiments of Fe3S4 materials, the research on its stable conditions, formation mechanism and evolution process is not yet depth. Accordingly, defining the stable conditions and revealing evolution law of Fe3S4 nanocrystals have important significance for the determination of environmental conditions and the preparation of pure Fe3S4 nanomaterials.展开更多
In order to describe the behavior of the car under ice and snowfall conditions more realistically,a vehicle following model based on the full velocity difference model is proposed under the premise of considering the ...In order to describe the behavior of the car under ice and snowfall conditions more realistically,a vehicle following model based on the full velocity difference model is proposed under the premise of considering the speed difference and various kinds of ice and snowfall conditions. Under various road conditions,it obtains the critical stability curve of the model,and verifies that the worse the road condition is,the less stable the traffic flow is. In addition,the method of nonlinear analysis is used to obtain the solution of the kink density wave in the space headway under the unstable region. Finally,the conclusions are verified by numerical simulation,that worse road conditions,which means the road surface friction coefficient is small,will lead to greater instability region and worse anti-interference ability of traffic flow,and even cause more congestion and accidents. The conclusions make great contributions to handling the traffic jams and security issues under ice and snowfall conditions.展开更多
We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability ...We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.展开更多
The purpose of this research is to study the effect of longwall mining on the stability of main roadway in the underground coal mine. The PT GDM (Gerbang Daya Mandiri) underground coal mine in Indonesia, where the r...The purpose of this research is to study the effect of longwall mining on the stability of main roadway in the underground coal mine. The PT GDM (Gerbang Daya Mandiri) underground coal mine in Indonesia, where the rocks are weak, was selected as a representative study site. To accomplish the objective of the research, the finite difference code software FLAC3D was used as a tool for the numerical simulations. The longwall mining of several panel and barrier pillar widths at various depths was simulated and discussed. Based on the simulation results, it indicates that the effect of coal panel extraction on the main roadway stability depends on the width of panel and barrier pillar. The greatest effect occurs when the large panel width and the small barrier pillar width are applied, whereas the smallest effect happens when the narrow panel width and the large barrier pillar width are adopted. In this paper, therefore, to maintain the stability of the main roadway with the aim of maximizing the coal recovery, the appropriate size of panel and barrier pillar width is proposed for each mining depth for this underground coal mine.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal ...The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal force because of the remained shell formed at the beginning and its developing afterwards. Through theoretically analyzing the crack filling and the remained shell developing, stability conditions were presented. The essential one of them is that the stress acted on the semisolid slurry must be larger than the yield stress of it. The condition without breakage is to build a balance between the increase of the remained shell resulted in solidifying and the decrease of it resulted in flowing of the semisolid slurry. The condition without breakout is to ensure the solidified thickness larger than the safe thickness. The corresponding mathematical formulas of these conditions were set up and the verification experiments show that these conditions are reliable in applications. [展开更多
This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model ...This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.展开更多
A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular ...A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter's atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter's atmosphere and to compare the stability of motions in Jupiter's atmosphere and Earth's atmosphere further.展开更多
The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole exca...The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole excavated in strain-softening rock. Damage evolution around the borehole was studied by tracking acoustic emission. The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated. There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached. The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strainsoftening material as well. The research is helpful to developing an evaluation method of borehole stability during air drilling.展开更多
Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is...Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.展开更多
A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear t...A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.展开更多
In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is i...In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.展开更多
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金supported by the National Basic Research Program of China(No.2009CB219503)the Special Fund for Ministry of Land and Resources research of China in the Public Interest(201111026)the Natural Science Foundation of Shandong Province of China(No.ZR2009FQ017)
文摘For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.
基金supported by Slovak Grant Agency (VEGA 1/0197/15)the Ministry of Education, Youth and Sport of the Czech Republic within the scope of project No.LO1207 of the program NPU1
文摘Spherical Ag nanoparticles(AgNPs) with a diameter of 20 nm or smaller were biologically synthesized using algae Parachlorella kessleri. The effect of storage conditions on the long-term stability of AgNPs was investigated. UV/Vis spectrophotometry, transmission electron microscopy, and dynamic light scattering measurements revealed that the long-term stability of AgNPs was influenced by light and temperature conditions. The most significant loss of stability was observed for the AgNPs stored in daylight at room temperature. The AgNPs stored under these conditions began to lose their stability after approximately 30 d; after 100 d, a substantial amount of agglomerated particles settled to the bottom of the Erlenmeyer flask. The AgNPs stored in the dark at room temperature exhibited better long-term stability. Weak particle agglomeration began at approximately the 100 th day. The AgNPs stored in the dark at about 5℃ exhibited the best long-term stability; the AgNPs stored under such conditions remained spherical, with a narrow size distribution, and stable(no agglomeration) even after 6 months. Zeta-potential measurements confirmed better dispersity and stability of AgNPs stored under these conditions.
文摘In this paper, global asymptotic stability for cellular neural networks with time delay is discussed using a novel Liapunov function. Some novel sufficient conditions for global asymptotic stability are obtained. Those results are simple and practical than those given by P. P. Civalleri, et al., and have a leading importance to design cellular neural networks with time delay.
基金supported by the National Key Research and Development Plan of China under Grant No.2021YFB2600703.
文摘Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.
基金funded by the National Natural Science Foundation of China (No.42261028,No.41961010,No.41801033)the "Light of West China" Program for the Organization Department of the Central Committee of the CPC, etc. (Zhang Mingli)+2 种基金the Chinese Academy of Sciences "Light of West China" Program for Western Young ScholarsIndustrial support program of higher education of Gansu province (2020C-40)Basic Research Innovation Group of Gansu province (20JR5RA478)
文摘The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘Fe3S4 is important magnetic mineral that widely exists in the sediments of lakes and oceans. It can not only instruct reducing environment that contains organic matter and sulfate, but also provide paleomagnetic signal for paleoenvironmet research. Simultaneously, as a new type of magnetic material, it causes attention. Because Fe3S4 generally exists as an unstable intermediate, it is stringent in preparation conditions. Although some scholars have conducted on the synthesis experiments of Fe3S4 materials, the research on its stable conditions, formation mechanism and evolution process is not yet depth. Accordingly, defining the stable conditions and revealing evolution law of Fe3S4 nanocrystals have important significance for the determination of environmental conditions and the preparation of pure Fe3S4 nanomaterials.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71471046,51478151 and 51308165)the Natural Science Foundation of Shandong Province(Grant No.ZR2014GM003 and ZR2013EEQ003)
文摘In order to describe the behavior of the car under ice and snowfall conditions more realistically,a vehicle following model based on the full velocity difference model is proposed under the premise of considering the speed difference and various kinds of ice and snowfall conditions. Under various road conditions,it obtains the critical stability curve of the model,and verifies that the worse the road condition is,the less stable the traffic flow is. In addition,the method of nonlinear analysis is used to obtain the solution of the kink density wave in the space headway under the unstable region. Finally,the conclusions are verified by numerical simulation,that worse road conditions,which means the road surface friction coefficient is small,will lead to greater instability region and worse anti-interference ability of traffic flow,and even cause more congestion and accidents. The conclusions make great contributions to handling the traffic jams and security issues under ice and snowfall conditions.
文摘We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.
文摘The purpose of this research is to study the effect of longwall mining on the stability of main roadway in the underground coal mine. The PT GDM (Gerbang Daya Mandiri) underground coal mine in Indonesia, where the rocks are weak, was selected as a representative study site. To accomplish the objective of the research, the finite difference code software FLAC3D was used as a tool for the numerical simulations. The longwall mining of several panel and barrier pillar widths at various depths was simulated and discussed. Based on the simulation results, it indicates that the effect of coal panel extraction on the main roadway stability depends on the width of panel and barrier pillar. The greatest effect occurs when the large panel width and the small barrier pillar width are applied, whereas the smallest effect happens when the narrow panel width and the large barrier pillar width are adopted. In this paper, therefore, to maintain the stability of the main roadway with the aim of maximizing the coal recovery, the appropriate size of panel and barrier pillar width is proposed for each mining depth for this underground coal mine.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金Project (5 992 81)supportedbytheNaturalScienceFoundationofHebeiProvince P .R .China
文摘The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal force because of the remained shell formed at the beginning and its developing afterwards. Through theoretically analyzing the crack filling and the remained shell developing, stability conditions were presented. The essential one of them is that the stress acted on the semisolid slurry must be larger than the yield stress of it. The condition without breakage is to build a balance between the increase of the remained shell resulted in solidifying and the decrease of it resulted in flowing of the semisolid slurry. The condition without breakout is to ensure the solidified thickness larger than the safe thickness. The corresponding mathematical formulas of these conditions were set up and the verification experiments show that these conditions are reliable in applications. [
基金Supported by National Natural Science Foundation of China (50977008, 60904017, 60774048, 60728307), the Funds for Creative Research Groups of China (60521003), the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0421), and the 111 Project (B08015), National High Technology Research and Development Program of China (863 Program) (2006AA04Z183)
文摘This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.
基金The work was jointly supported by the Chinese Academy of Sciences (Grant No. KZCX3-SW-230) the National Natural Science Foundation of China (Grant Nos. 40233029 and 40221503)
文摘A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter's atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter's atmosphere and to compare the stability of motions in Jupiter's atmosphere and Earth's atmosphere further.
文摘The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole excavated in strain-softening rock. Damage evolution around the borehole was studied by tracking acoustic emission. The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated. There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached. The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strainsoftening material as well. The research is helpful to developing an evaluation method of borehole stability during air drilling.
基金the National Natural Science Foundation of China (50579022 50539140).
文摘Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.
文摘A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20010614003)
文摘In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.