Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However...Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.展开更多
This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-corr...This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-correlated noises. The results show that the output signal-to-noise ratio can reach a maximum with the increase of the average phase- synchronization time, which may be helpful for understanding the principle of SR from the point of synchronization; however, SR and the maximum of the average phase-synchronization time appear at different optimal noise level, moreover, the effects on them of additive and multiplicative noise are different.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
This paper proposes a novel complex network with assortative property based on multi-center networks. The average path length and clustering coefficient of the network are calculated, and the impact on the network top...This paper proposes a novel complex network with assortative property based on multi-center networks. The average path length and clustering coefficient of the network are calculated, and the impact on the network topology is investigated. A simple dynamic system established on the proposed network is used to analyze how the assortative property of the network affects synchronization.展开更多
为了满足运行速度快、时延低、性能好、公平性好等特点,提出了多服务器门限服务系统,并利用BiLSTM(Bi-direc-tional Long Short-Term Memory)神经网络对其进行预测分析,使用多服务器接入方式来降低网络时延,改善系统性能。多个服务器调...为了满足运行速度快、时延低、性能好、公平性好等特点,提出了多服务器门限服务系统,并利用BiLSTM(Bi-direc-tional Long Short-Term Memory)神经网络对其进行预测分析,使用多服务器接入方式来降低网络时延,改善系统性能。多个服务器调度时,可以采用同步和异步两种方式。首先,研究多服务器门限服务的系统模型。其次,在单服务器的基础上,利用嵌入马尔可夫链和概率母函数的分析方法对多服务器门限服务的平均排队队长、平均循环周期和平均时延进行求解;同时,利用Matlab进行仿真实验,分别将单服务器系统与多服务器系统的理论值与仿真值进行系统分析,对比多服务器同步和异步两种方式。最后,构建BiLSTM神经网络来预测多服务器系统的性能。实验结果表明,该多服务器系统异步方式优于同步和单服务器系统,多服务器异步系统的性能更好,时延更低,效率更高。综合对比多服务器的3种基本服务系统,在保证公平性的情况下,门限服务系统更加稳定。并且使用BiLSTM神经网络预测算法能够准确预测系统的性能,提高计算效率,对轮询系统的性能评价具有指导意义。展开更多
基金Supported by National Postdoctoral Program for Innovative Talent of China (Grant No.BX20180031)。
文摘Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.
文摘This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-correlated noises. The results show that the output signal-to-noise ratio can reach a maximum with the increase of the average phase- synchronization time, which may be helpful for understanding the principle of SR from the point of synchronization; however, SR and the maximum of the average phase-synchronization time appear at different optimal noise level, moreover, the effects on them of additive and multiplicative noise are different.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金The project supported by National Natural Science Foundation of China Under Grant Nos. 10672093, 10372054t and 70431002
文摘This paper proposes a novel complex network with assortative property based on multi-center networks. The average path length and clustering coefficient of the network are calculated, and the impact on the network topology is investigated. A simple dynamic system established on the proposed network is used to analyze how the assortative property of the network affects synchronization.
文摘为了满足运行速度快、时延低、性能好、公平性好等特点,提出了多服务器门限服务系统,并利用BiLSTM(Bi-direc-tional Long Short-Term Memory)神经网络对其进行预测分析,使用多服务器接入方式来降低网络时延,改善系统性能。多个服务器调度时,可以采用同步和异步两种方式。首先,研究多服务器门限服务的系统模型。其次,在单服务器的基础上,利用嵌入马尔可夫链和概率母函数的分析方法对多服务器门限服务的平均排队队长、平均循环周期和平均时延进行求解;同时,利用Matlab进行仿真实验,分别将单服务器系统与多服务器系统的理论值与仿真值进行系统分析,对比多服务器同步和异步两种方式。最后,构建BiLSTM神经网络来预测多服务器系统的性能。实验结果表明,该多服务器系统异步方式优于同步和单服务器系统,多服务器异步系统的性能更好,时延更低,效率更高。综合对比多服务器的3种基本服务系统,在保证公平性的情况下,门限服务系统更加稳定。并且使用BiLSTM神经网络预测算法能够准确预测系统的性能,提高计算效率,对轮询系统的性能评价具有指导意义。