For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of...For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.展开更多
The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hu...The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hull-form ship and an $60 ship moving in waves are examined, and the corresponding retard functions are in good agreement with those given by DTM and FTTM. The comparison of retard functions in different forward speeds by the two methods is observed, and the results of ship motions in forward speed are also compared with the experimental data. On this basis, the advantage and disadvantage of them are discussed.展开更多
The transition of a two-level system driven by a linearly weak chirped pulse is studied. Under the first order perturbation approximation, an analytical expression of the population probability is obtained, which is s...The transition of a two-level system driven by a linearly weak chirped pulse is studied. Under the first order perturbation approximation, an analytical expression of the population probability is obtained, which is similar to the one describing Fresnel diffraction by a straight edge. It is shown that the population oscillation results from the diffraction of quantum wave function in time-domain.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
Time-domain state-domain methods are common approaches in modern financial analysis.Economic conditions vary time,drift function depends on time and price level for a given state variable.In this paper,to consistently...Time-domain state-domain methods are common approaches in modern financial analysis.Economic conditions vary time,drift function depends on time and price level for a given state variable.In this paper,to consistently estimate the bivariate drift function,our purpose a new dynamic integrated estimator by combing time-and state-domain methods for estimating drift function.And we establish its asymptotic properties and illustrates it outperforms some old ones by simulations.展开更多
Technical development oriented on the detailed seismic imaging and velocity model building coupled with rapid increase of the computing power available nowadays make it possible to process large volumes of seismic dat...Technical development oriented on the detailed seismic imaging and velocity model building coupled with rapid increase of the computing power available nowadays make it possible to process large volumes of seismic data using numerically intensive approaches based the wavefield propagation.展开更多
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge...A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed.展开更多
Look Up Tables(LUTs) are the key components of Field-Programmable Gate Arrays(FPGAs)Many LUT architectures have been studied; nevertheless, it is difficult to quantificationally evaLUT based architecture. Traditionall...Look Up Tables(LUTs) are the key components of Field-Programmable Gate Arrays(FPGAs)Many LUT architectures have been studied; nevertheless, it is difficult to quantificationally evaLUT based architecture. Traditionally, dedicated efforts on specific modifications to the temapping tools are required for LUT architecture evaluation. A more feasible evaluation method forfunctionality is strongly required for the design of LUT architecture. In this paper, a mathematical for logic functionality calculation is proposed and conventional and fracturable LUT architectanalyzed. Furthermore, a cascaded fracturable LUT architecture is presented, which achieves twice functionality compared with the conventional LUTs and fracturable LUTs.展开更多
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium G...The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.展开更多
Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consist...Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.展开更多
The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the m...The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.展开更多
By applying nonequilibrium Green’s functions (NEGF) in combination with the density functional theory (DFT), we investigate the electronic transport properties of gated phenalenyl molecular devices with two different...By applying nonequilibrium Green’s functions (NEGF) in combination with the density functional theory (DFT), we investigate the electronic transport properties of gated phenalenyl molecular devices with two different contact geometries. The calculated results show that electronic transport properties of the two different devices can be modulated by external transverse gates. When the molecule contacts the Au electrodes through two second-nearest sites, the current-voltage (<em>I</em>-<em>V</em>) characteristic curves are symmetric and suppressed by the gate electrodes. However, a rectifying behavior will occur when the electrodes connect the molecule on both sides, one second-nearest site and one third-nearest site, respectively. Mechanisms for such phenomena are proposed and these findings suggest a new opportunity for developing molecular devices.展开更多
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a...The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.展开更多
In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering...In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.展开更多
文摘For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
文摘The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hull-form ship and an $60 ship moving in waves are examined, and the corresponding retard functions are in good agreement with those given by DTM and FTTM. The comparison of retard functions in different forward speeds by the two methods is observed, and the results of ship motions in forward speed are also compared with the experimental data. On this basis, the advantage and disadvantage of them are discussed.
基金Supported by the Natural Science Foundation of Shaanxi Province of China (Grant No.2007A04)
文摘The transition of a two-level system driven by a linearly weak chirped pulse is studied. Under the first order perturbation approximation, an analytical expression of the population probability is obtained, which is similar to the one describing Fresnel diffraction by a straight edge. It is shown that the population oscillation results from the diffraction of quantum wave function in time-domain.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
基金Supported by the Natural Science Research Foundation of Education Department of Guizhou Province(20090080,2010076)Supported by the Project of Kaili University(Z1004)Supported by the Key Discipline Construction Program of Kaili University(KZD2009001)
文摘Time-domain state-domain methods are common approaches in modern financial analysis.Economic conditions vary time,drift function depends on time and price level for a given state variable.In this paper,to consistently estimate the bivariate drift function,our purpose a new dynamic integrated estimator by combing time-and state-domain methods for estimating drift function.And we establish its asymptotic properties and illustrates it outperforms some old ones by simulations.
基金by the SEISCOPE consortium(http://seiscope2.osug.fr),sponsored by AKERBP,CGG,CHEVRON,EQUINOR,EXXON-MOBIL,JGI,SHELL,SINOPEC,SISPROBE,and TOTALthe Polish National Science Center,(Grant No.2019/33/B/ST10/01014)
文摘Technical development oriented on the detailed seismic imaging and velocity model building coupled with rapid increase of the computing power available nowadays make it possible to process large volumes of seismic data using numerically intensive approaches based the wavefield propagation.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405202)the National Natural Science Foundation of China(Grant Nos.61690221,91850209,and 11774277)。
文摘A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed.
文摘Look Up Tables(LUTs) are the key components of Field-Programmable Gate Arrays(FPGAs)Many LUT architectures have been studied; nevertheless, it is difficult to quantificationally evaLUT based architecture. Traditionally, dedicated efforts on specific modifications to the temapping tools are required for LUT architecture evaluation. A more feasible evaluation method forfunctionality is strongly required for the design of LUT architecture. In this paper, a mathematical for logic functionality calculation is proposed and conventional and fracturable LUT architectanalyzed. Furthermore, a cascaded fracturable LUT architecture is presented, which achieves twice functionality compared with the conventional LUTs and fracturable LUTs.
文摘The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MA059)the Major Scientific and Technological Innovation Project(MSTIP)of Shandong Province,China(Grant No.2019JZZY010209)。
文摘Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.
基金National Natural Science Foundation of China(Grant Nos.11874242,21933002,and 11704230)China Postdoctoral Science Foundation(Grant No.2017M612321)the Taishan Scholar Project of Shandong Province of China.
文摘The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.
文摘By applying nonequilibrium Green’s functions (NEGF) in combination with the density functional theory (DFT), we investigate the electronic transport properties of gated phenalenyl molecular devices with two different contact geometries. The calculated results show that electronic transport properties of the two different devices can be modulated by external transverse gates. When the molecule contacts the Au electrodes through two second-nearest sites, the current-voltage (<em>I</em>-<em>V</em>) characteristic curves are symmetric and suppressed by the gate electrodes. However, a rectifying behavior will occur when the electrodes connect the molecule on both sides, one second-nearest site and one third-nearest site, respectively. Mechanisms for such phenomena are proposed and these findings suggest a new opportunity for developing molecular devices.
文摘The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Fundamental Research Funds for the Central Universities (Grant No. 20110203110012)
文摘In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.