In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method c...In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method can also be applied to the study of pollen xenia effect, pollination tree selection and pure pollen collection in pear tree cultivation.展开更多
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w...At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.展开更多
In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induc...In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. In the cross-section calculations, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of the neutron flux, and low energy neutrons. The measured cross-sections were compared with the literature data, evaluation data(ENDF-B/VII.1, JENDL-4.0 and CENDL-3.1), and the results of the model calculation(TALYS1.6).展开更多
Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In ord...Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.展开更多
It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this pa...It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.展开更多
Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equ...Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.展开更多
This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic f...This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.展开更多
The finite volume method (FVM) and the lattice Boltzmann method (LBM) are coupled with each other to construct a new cross-scaling method to deal with the porous flow problem. To check the effectiveness of our dev...The finite volume method (FVM) and the lattice Boltzmann method (LBM) are coupled with each other to construct a new cross-scaling method to deal with the porous flow problem. To check the effectiveness of our developed cross-scaling LBM-FVM, the above mentioned problem is also solved by the well known LBM-LBM. Based on the data checking of the published data and the results of LBM-FVM and LBM-LBM, good agreement is observed.展开更多
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are...Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some im...Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the p...The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operatio...The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.展开更多
When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour...When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour integral. The integrand is expanded to Taylor series and the integral results in a closed form. The cut-off error is analyzed to show that the series converges fast and only about 2 terms can agree wel with the accurate result. The comparison of the perfect electric conductive (PEC) sphere's bi-static radar cross section (RCS) using MoM and the accurate method validates the feasibility in manipulating the singularity. The error due to the facet size and the cut-off terms of the series are analyzed in examples.展开更多
基金Supported by HAAFS Science and Technology Innovation Special Project(2022KJCXZX-CGS-7)the Key Research and Development Program of Hebei Province(21326308D-1-2)Hebei Agriculture Research System(HBCT 2024170406)。
文摘In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method can also be applied to the study of pollen xenia effect, pollination tree selection and pure pollen collection in pear tree cultivation.
基金Supported by the National Natural Science Foundation of China(No.51775325)National Key R&D Program of China(No.2018YFB1309200)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.
基金Supported by National Natural Science Foundation of China(No.11205076)
文摘In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. In the cross-section calculations, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of the neutron flux, and low energy neutrons. The measured cross-sections were compared with the literature data, evaluation data(ENDF-B/VII.1, JENDL-4.0 and CENDL-3.1), and the results of the model calculation(TALYS1.6).
基金supported by the National Natural Science Foundation of China(61374164)
文摘Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.
基金This project was supported by the Foundation of MOE of China (No. 00179).
文摘It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.
基金This project was partially supported by the National Natural Science Foundation of China (60371041).
文摘Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.
文摘This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.
基金supported by the National Nature Science Foundation of China (10932010,51176172,11072220)the Research Grants Council of the Government of the HKSAR (PolyU5172/02E,PolyU5221/05E)
文摘The finite volume method (FVM) and the lattice Boltzmann method (LBM) are coupled with each other to construct a new cross-scaling method to deal with the porous flow problem. To check the effectiveness of our developed cross-scaling LBM-FVM, the above mentioned problem is also solved by the well known LBM-LBM. Based on the data checking of the published data and the results of LBM-FVM and LBM-LBM, good agreement is observed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60636030)
文摘Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
基金supported by the Saint Petersburg Mining University
文摘Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12241410)。
文摘The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
文摘The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.
基金supported by the National Natural Science Foundationof China for the Youth(51307004)
文摘When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour integral. The integrand is expanded to Taylor series and the integral results in a closed form. The cut-off error is analyzed to show that the series converges fast and only about 2 terms can agree wel with the accurate result. The comparison of the perfect electric conductive (PEC) sphere's bi-static radar cross section (RCS) using MoM and the accurate method validates the feasibility in manipulating the singularity. The error due to the facet size and the cut-off terms of the series are analyzed in examples.