期刊文献+
共找到1,558篇文章
< 1 2 78 >
每页显示 20 50 100
Equalization Reconstruction Algorithm Based on Reference Signal Frequency Domain Block Joint for DTMB-Based Passive Radar
1
作者 Shuai Ma Zeqi Yang +2 位作者 Hua Zhang Yiheng Liu Xiaode Lyu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期41-53,共13页
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small... Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection. 展开更多
关键词 passive radar frequency domain equalization reference signal reconstruction digital terrestrial multimedia broadcasting(DTMB)
下载PDF
Detection method of forward-scatter signal based on Rényi entropy 被引量:1
2
作者 ZHENG Yuqing AI Xiaofeng +2 位作者 YANG Yong ZHAO Feng XIAO Shunping 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期865-873,共9页
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe... The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection. 展开更多
关键词 forward scatter radar(FSR) Global Navigation Satellite System(GNSS) time-frequency distribution Rényi entropy signal detection
下载PDF
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
3
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
下载PDF
Parameterized time-frequency analysis to separate multi-radar signals 被引量:1
4
作者 Wenlong Lu Junwei Xie +1 位作者 Heming Wang Chuan Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期493-502,共10页
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ... Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation. 展开更多
关键词 intercepted multi-radar signal parameterized time-frequency analysis DEMODULATION adaptive filtering
下载PDF
Surface wave attenuation based polarization attributes in time-frequency domain for multicomponent seismic data 被引量:1
5
作者 Kong Xuan-Lin Chen Hui +3 位作者 Hu Zhi-Quan Kang Jia-Xing Xu Tian-Ji and Li Lu-Ming 《Applied Geophysics》 SCIE CSCD 2018年第1期99-110,149,共13页
In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent v... In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent velocity between the effective signals and strong surface waves. First, we use the proposed method to obtain time-frequency spectra of seismic signals by using the wavelet transform and calculate the instantaneous polarizability at each point based on instantaneous polarization analysis. Then, we separate the surface wave area from the signal area based on the surface-wave apparent velocity and the average energy of the signal. Finally, we combine the polarizability, energy, and frequency characteristic to identify and suppress the signal noise. Model and field data are used to test the proposed filtering method. 展开更多
关键词 Vector seismic trace POLARIZATION time-frequency domain surface wave denoising
下载PDF
Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals 被引量:2
6
作者 Elias Ebrahimzadeh Mohammad Pooyan 《Journal of Biomedical Science and Engineering》 2011年第11期699-706,共8页
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v... Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%. 展开更多
关键词 SUDDEN CARDIAC DEATH Heart Rate Variability time-frequency Transform ELECTROCARDIOGRAM signal Linear Processing
下载PDF
A Recursive Method of Time-Frequency Analysis for the Signal Processing of Flutter Test with Progression Variable Speed 被引量:1
7
作者 宋叔飚 裴承鸣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期213-217,共5页
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr... Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method. 展开更多
关键词 flutter test with progression variable speed (FTPVS) non-stationary signal processing recursive time-frequency analysis (RTFA)
下载PDF
Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
8
作者 Yisha Li Ya Zhang +1 位作者 Xinde Li Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1987-1998,共12页
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight... This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models. 展开更多
关键词 Human-machine cooperation mixed domain attention mechanism multi-agent reinforcement learning spatio-temporal feature traffic signal control
下载PDF
HQNN-SFOP:Hybrid Quantum Neural Networks with Signal Feature Overlay Projection for Drone Detection Using Radar Return Signals-A Simulation
9
作者 Wenxia Wang Jinchen Xu +4 位作者 Xiaodong Ding Zhihui Song Yizhen Huang Xin Zhou Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第10期1363-1390,共28页
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ... With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals. 展开更多
关键词 Quantum computing hybrid quantum neural network drone detection using radar signals time domain features
下载PDF
Joint Time-Frequency Analysis of Seismic Signals:A Critical Review
10
作者 Roshan Kumar Wei Zhao Vikash Singh 《Structural Durability & Health Monitoring》 EI 2018年第2期65-83,共19页
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical... This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data. 展开更多
关键词 time-frequency distribution Seismic signals Cross-term interference Autoterm Gabor transform Wigner-Ville distribution
下载PDF
Cyclic-Auto-Correlation Based Timing Estimation Algorithm for Time-Frequency Overlapping Multi-Carrier Signals
11
作者 Xing Zhang Jian-Hao Hu 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第3期223-233,共11页
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research... In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications. 展开更多
关键词 Cyclic auto-correlation orthogonal frequency division multiplexing(OFDM) time-frequency overlapping signal timing estimation
下载PDF
Time-Frequency Entropy Analysis of Arc Signal in Non-Stationary Submerged Arc Welding
12
作者 Kuanfang He Siwen Xiao +1 位作者 Jigang Wu Guanbin Wang 《Engineering(科研)》 2011年第2期105-109,共5页
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ... The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach. 展开更多
关键词 NON-STATIONARY signal SUBMERGED ARC Welding time-frequency ENTROPY Stability
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
13
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 signal Segmentation time-frequency Distribution Short-Time FOURIER TRANSFORM NON-STATIONARY WIENER MASKING
下载PDF
Research on time-frequency cross mutual of motor imagination data based on multichannel EEG signal
14
作者 REN Bin PAN Yunjie 《High Technology Letters》 EI CAS 2022年第1期21-29,共9页
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w... At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation. 展开更多
关键词 electroencephalogram(EEG)signal time-frequency cross mutual information(TFCMI) motion imaging common spatial pattern(CSP) support vector machine(SVM)
下载PDF
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
15
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary Gear Train Encoder signal Instantaneous Angular Speed signal Time-domain Synchronous Averaging Fault Diagnosis
下载PDF
Application of sparse time-frequency decomposition to seismic data 被引量:3
16
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
17
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom Time-shear Adaptive signal decomposition time-frequency distribution.
下载PDF
DOA estimation method for wideband signals by sparse recovery in frequency domain 被引量:1
18
作者 Jiaqi Zhen Zhifang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期871-878,共8页
The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem,... The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR). 展开更多
关键词 SUPER-RESOLUTION direction of arrival sparse recovery frequency domain wideband signals
下载PDF
RECONSTRUCTION OF ONE DIMENSIONAL MULTI-LAYERED MEDIA BY USING A TIME DOMAIN SIGNAL FLOW GRAPH TECHNIQUE 被引量:1
19
作者 崔铁军 梁昌洪 《Journal of Electronics(China)》 1993年第2期162-169,共8页
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f... A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this 展开更多
关键词 Multi-layered MEDIUM Reconstruct PERMITTIVITY profile INVERSE SCATTERING Time domain signal flow GRAPH
下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
20
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram signal time domain FEATURES frequency domain FEATURES classification and regression tree CLASSIFIER particle swarm optimization algorithm.
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部